Cover
Vol. 16 No. 2 (2025)

Published: December 15, 2025

Pages: 102-116

Review Paper

Design of RF Power Amplifier Techniques for 5G and Beyond Communication Systems: A Review

Abstract

This review article discussed power amplifiers in modern wireless transmission systems, clarifying the determinants and restrictions of the create of power amplifiers in 5G and beyond transmission systems. The important topics of power amplifier design were discussed, which included solid-state techniques contributing to building the basic building block of the amplifier, furthermore to techniques for building the electronic circuit topology, while clarifying the importance of techniques for improving efficiency and linearity. This paper contributed to highlighting optimization and manufacturing techniques, focusing on the determinants and advantages of each technology. And clarifying the research space for researchers with the aim of developing a power amplifier that is optimal for use in modern wireless communications systems.

References

  1. H. Lu et al., "A Review of GaN RF Devices and Power Amplifiers for 5G Communication Applications," Fundam. Res., 2023.
  2. C.-X. Wang et al., "On the road to 6G: Visions, requirements, key technologies and testbeds," IEEE Commun. Surv. Tutorials, 2023.
  3. D. Y. C. Lie, J. C. Mayeda, and J. Lopez, "Highly efficient 5G linear power amplifiers (PA) design challenges," in 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2017, pp. 1-3.
  4. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, "A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends," IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, 2017.
  5. L. I. Lianming, S. I. Jiachen, and C. Linhui, "Design of Power Amplifier for mm Wave 5G and Beyond.," Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 36, no. 4, 2019.
  6. T. Dragičević, P. Siano, and S. R. Prabaharan, "Future generation 5G wireless networks for smart grid: A comprehensive review," Energies, vol. 12, no. 11, p. 2140, 2019.
  7. J. S. Zou, S. A. Sasu, M. Lawin, A. Dochhan, J.-P. Elbers, and M. Eiselt, "Advanced optical access technologies for next-generation (5G) mobile networks," J. Opt. Commun. Netw., vol. 12, no. 10, pp. D86-D98, 2020.
  8. S. A. Mahmod, "scholar (32).ris," Int. J. Comput. Digit. Syst., vol. 6, no. 03, pp. 139-147, 2017.
  9. C. Hu et al., "Analysis and design of broadband outphasing power amplifier based on complex combining impedance," IEEE Trans. Circuits Syst. I Regul. Pap., vol. 70, no. 4, pp. 1542-1554, 2023.
  10. G. Nikandish, R. B. Staszewski, and A. Zhu, "Breaking the bandwidth limit: A review of broadband Doherty power amplifier design for 5G," IEEE Microw. Mag., vol. 21, no. 4, pp. 57-75, 2020.
  11. W. Shi et al., "Divisional load-modulated balanced amplifier with extended dynamic power range," IEEE Trans. Microw. Theory Tech., 2022.
  12. J. Y. Lee, D. Wu, X. Guo, M. Ariannejad, M. A. S. Bhuiyan, and M. H. Miraz, "Design of a W-band High-PAE Class A & AB Power Amplifier in 150 nm GaAs Technology," Trans. Electr. Electron. Mater., pp. 1-10, 2024.
  13. S. Aboagye et al., "Multi-band Wireless Communication Networks: Fundamentals, Challenges, and Resource Allocation," IEEE Trans. Commun., 2024.
  14. M. de Kok, A. B. Smolders, and U. Johannsen, "A review of design and integration technologies for D-band antennas," IEEE Open J. Antennas Propag., vol. 2, pp. 746-758, 2021.
  15. G. Lv, W. Chen, X. Liu, F. M. Ghannouchi, and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high efficiency and compact size for 5G application," IEEE Access, vol. 7, pp. 71665-71674, 2019.
  16. T. Bücher, J. Grzyb, P. Hillger, H. Rücker, B. Heinemann, and U. R. Pfeiffer, "A broadband 300 GHz power amplifier in a 130 nm SiGe BICMOS technology for communication applications," IEEE J. Solid-State Circuits, vol. 57, no. 7, pp. 2024-2034, 2022.
  17. G. Lv, W. Chen, L. Chen, and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high gain and high efficiency for 5G application," in 2019 IEEE MTT-S International Microwave Symposium (IMS), IEEE, 2019, pp. 560-563.
  18. A. Vasjanov and V. Barzdenas, "A review of advanced CMOS RF power amplifier architecture trends for low power 5G wireless networks," Electronics, vol. 7, no. 11, p. 271, 2018.
  19. S. S. Hamid et al., "A State-of-the-Art Review on CMOS Radio Frequency Power Amplifiers for Wireless Communication Systems," Micromachines, vol. 14, no. 8, p. 1551, 2023.
  20. A. Borel, V. Barzdėnas, and A. Vasjanov, "Linearization as a solution for power amplifier imperfections: A review of methods," Electronics, vol. 10, no. 9, p. 1073, 2021.
  21. C. Du et al., "Fundamentals of modern VLSI devices," J. Semicond., vol. 44, no. 12, p. 121801, 2023.
  22. H. Wang, P. M. Asbeck, and C. Fager, "Millimeter-wave power amplifier integrated circuits for high dynamic range signals," IEEE J. Microwaves, vol. 1, no. 1, pp. 299-316, 2021.
  23. T. Jyo, M. Nagatani, H. Wakita, M. Mutoh, Y. Shiratori, and H. Takahashi, "Over 200-GHz-Bandwidth InP DHBT Baseband Amplifier ICs and Ultrabroadband Modules With 1-/0.8-mm Coaxial Connectors," IEEE Trans. Microw. Theory Tech., 2024.
  24. X. Zhao et al., "The Study on Single-Event Effects and Hardening Analysis of Frequency Divider Circuits Based on InP HBT Process," Micromachines, vol. 15, no. 4, p. 527, 2024.
  25. V. Camarchia, R. Quaglia, A. Piacibello, D. P. Nguyen, H. Wang, and A.-V. Pham, "A review of technologies and design techniques of millimeter-wave power amplifiers," IEEE Trans. Microw. Theory Tech., vol. 68, no. 7, pp. 2957-2983, 2020.
  26. H. Wang et al., "Power amplifiers survey 2000-present," PA_survey. html, 2020.
  27. X. Fang, J. Shi, C. Wei, Y. Duan, P. Li, and Z. Wang, "A linear millimeter-wave GaN MMIC Doherty power amplifier with improved AM-AM and AM-PM characteristics," IEEE Trans. Microw. Theory Tech., vol. 72, no. 8, pp. 4597-4610, 2024.
  28. V. Cerantonio, M. Giuffrida, C. Miccoli, A. Chini, and F. Iucolano, "From T-CAD simulations to large signal model for GaN RF device," in 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), IEEE, 2020, pp. 1-6.
  29. Z. Griffith, M. Urteaga, P. Rowell, and R. Pierson, "71-95 GHz (23-40% PAE) and 96-120 GHz (19-22% PAE) high efficiency 100-130 mW power amplifiers in InP HBT," in 2016 IEEE MTT-S International Microwave Symposium (IMS), IEEE, 2016, pp. 1-4.
  30. M. J. W. Rodwell, M. Le, and B. Brar, "A 24-to-30GHz Watt-Level Broadband Linear Doherty Power Amplifier with Multi-Primary Distributed-Active-Transformer Power-Combining Supporting 5G NR FR2 64-QAM with >19dBm Average Pout and >19% Average PAE," Proc. IEEE, vol. 96, no. 2, pp. 271-286, 2008.
  31. T. Tsutsumi, H. Sugiyama, and H. Nosaka, "High-Output-Power and reverse-isolation G-Band power amplifier module based on 80-NM InP HEMT technology," in 2018 Asia-Pacific Microwave Conference (APMC), IEEE, 2018, pp. 633-635.
  32. F. Wang and H. Wang, "24.1 A 24-to-30GHz Watt-Level Broadband Linear Doherty Power Amplifier with Multi-Primary Distributed-Active-Transformer Power-Combining Supporting 5G NR FR2 64-QAM with> 19dBm Average Pout and> 19% Average PAE," in 2020 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2020, pp. 362-364.
  33. J. Moron, R. Leblanc, F. Lecourt, and P. Frijlink, "12W, 30% PAE, 40 GHz power amplifier MMIC using a commercially available GaN/Si process," in 2018 IEEE/MTT-S International Microwave Symposium-IMS, IEEE, 2018, pp. 1457-1460.
  34. A. Margomenos et al., "GaN technology for E, W and G-band applications," in 2014 IEEE compound semiconductor integrated circuit symposium (CSICS), IEEE, 2014, pp. 1-4.
  35. F. Wang, T.-W. Li, and H. Wang, "GENERATIONS PARAMETERS and FEATURES 1G 2G 3G 4G 5G Peak Frequency 900 MHz 1900 MHz 2200 MHz 2300 MHz 6 GHz mm-Wave 25-50 GHz Bandwidth Downlink Data Rate 10 KHz Analog 300 Kb/s 3.0 Mb/s 1.0 Gb/s >1GHz >20 Gb/s Features Analog Voice only Circuit Switched," in 2019 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2019, pp. 88-90.
  36. N. Rostomyan, M. Özen, and P. Asbeck, "28 GHz Doherty power amplifier in CMOS SOI with 28% back-off PAE," IEEE Microw. Wirel. Components Lett., vol. 28, no. 5, pp. 446-448, 2018.
  37. A. T. Younis and A. A. Ismail, "Design Class (F) Power Amplifier for (GSM) Application Based on Optimization," Al-Rafidain Eng. J., vol. 23, no. 5, pp. 1-12, 2015.
  38. A. A. Ismael, A. T. Younis, E. A. Abdo, and S. H. Hussein, "Improvement of non-linear power amplifier performance using Doherty technique, J. Eng. Sci. Technol., vol. 16, no. 6, pp. 4481-4493, 2021.
  39. E. A. Abdo, A. T. Younis, and A. A. Ismael, "Optimum design of 2.4ghz low noise amplifier (Ina)," Pervasive Health Pervasive Comput. Technol. Healthc., vol. 2, pp. 903-913, 2020, doi: 10.4108/eai.28-6-2020.2298137.
  40. J. Bachi, "Design and implementation of high efficiency power amplifiers for 5G Applications," 2022, Institut Polytechnique de Paris.
  41. K. H. An, CMOS RF power amplifiers for mobile wireless communications. Georgia Institute of Technology, 2009.
  42. A. A. Ismail, A. T. Younis, N. A. Abduljabbar, B. A. Mohammed, and R. A. Abd-Alhameed, "A 2.45-GHz class-F power amplifier for CDMA systems," in 2015 Internet Technologies and Applications (ITA), IEEE, 2015, pp. 428-433.
  43. K. Vivien, "From 1G to 5G," 2020, Université Paris-Est.
  44. H. Hodara and E. Skaljo, "From 1G to 5G," Fiber Integr. Opt., vol. 40, no. 2-3, pp. 85-183, 2021.
  45. A. Arun, "An Integrated GaN Power Amplifier at 5 GHz," 2024, Carleton University.
  46. M. I. Al-Rayif, H. E. Seleem, A. M. Ragheb, and S. A. Alshebeili, "PAPR reduction in UFMC for 5G cellular systems," Electronics, vol. 9, no. 9, p. 1404, 2020.
  47. R. Kumari, M. Chawla, and M. T. Scholar, "Review of PAPR reduction techniques for 5G system," Int. J. Electron. Commun. Eng., vol. 10, no. 1, pp. 35-44, 2017.
  48. K. Vivien, "Linearity and Efficiency of Load Modulated Power Amplifiers," 2020, Université Paris-Est.
  49. M. Mohsina and G. M. Rather, "Switched mode power amplifiers: A brief review and comparative study," in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), IEEE, 2017, pp. 3447-3452.
  50. A. R. Ghorbani and M. B. Ghaznavi-Ghoushchi, "A low-area, 43.51% PAE, 0.9 W, Class-E differential power amplifier in 2.4 GHz for loT applications," Integration, vol. 61, pp. 178-185, 2018.
  51. M. Love, M. Thian, and A. Grebennikov, "Α 5-GHz Class-E3F2 power amplifier with 51% PAE and 21-dBm output power on 65nm CMOS," in 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON), IEEE, 2017, pp. 1-4.
  52. H.-C. Lin, K.-C. Chen, and H.-K. Chiou, "An 8.1-W, 50.9% efficient continuous Class-F mode power amplifier developed using 0.25-µm GaN/SiC technology for 5G NR n79 band," IEICE Electron. Express, vol. 20, no. 8, p. 20230068, 2023.
  53. A. Ahsan, S. Sutradhar, and M. J. Akhtar, "Design of Wideband Class AB Power Amplifier Using Improved SRFT Matching for Low Power Applications," in 2024 IEEE Asia-Pacific Microwave Conference (APMC), IEEE, 2024, pp. 593-595.
  54. R. S. Nitesh, J. Rajendran, H. Ramiah, and A. Abd Manaf, "A 700MHz to 2.5 GHz cascode GaAs power amplifier for multi-band pico-cell achieving 20dB gain, 40dBm to 45dBm OIP3 and 66% peak PAE," IEEE Access, vol. 6, pp. 818-829, 2017.
  55. K. S. Yi, S. A. Z. Murad, and S. N. Mohyar, "Design of 2.4GHz Two Stages Cascode Class E Power Amplifier for Wireless Application," in Journal of Physics: Conference Series, IOP Publishing, 2021, p. 12017.
  56. Smolarz, K. Staszek, S. Gruszczynski, and K. Wincza, "Broadband Monolithic GaN Balanced Amplifier Composed of Mixed Cascade-Tandem Directional Couplers and Cascode Stages," IEEE Access, vol. 11, pp. 129425-129435, 2023.
  57. M. Yavari and M. Mohtashamnia, "A fully-differential improved recycling folded-cascode amplifier for fast-settling switched-capacitor applications," Eng. Sci. Technol. an Int. J., vol. 59, p. 101886, 2024.
  58. N. Elsayed, S. Makhsuci, and M. Sanduleanu, "A 28GHz, Switched-Cascode, Class E Amplifier in 22nm CMOS FDSOI Technology," IEEE J. Microwaves, 2024.
  59. R. Della Sala, F. Centurelli, P. Monsurrò, and G. Scotti, "On the Feasibility of Cascode and Regulated Cascode Amplifier Stages in ULV Circuits Exploiting MOS Transistors in Deep Subthreshold Operation," IEEE Access, 2024.
  60. Y. Takahashi, D. Ito, M. Nakamura, A. Tsuchiya, T. Inoue, and K. Kishine, "Low-power regulated cascode CMOS transimpedance amplifier with local feedback circuit," Electronics, vol. 11, no. 6, p. 854, 2022.
  61. C. Wu, P. Cai, J. Li, J. Xie, and Z. Luo, "Power-Efficient Recycling Folded Cascode Operational Transconductance Amplifier Based on Nested Local Feedback and Adaptive Biasing," Sensors, vol. 25, no. 8, p. 2523, 2025.
  62. E. Amiri, M. Joodaki, M. Forouzanfer, and G. Kompa, "A distributed power amplifier design with a high power gain," in 2020 28th Iranian Conference on Electrical Engineering (ICEE), IEEE, 2020, pp. 1-4.
  63. Y. Zhang and K. Ma, "A 2-22 GHz CMOS distributed power amplifier with combined artificial transmission lines," IEEE Microw. Wirel. Components Lett., vol. 27, no. 12, pp. 1122-1124, 2017.
  64. M. M. Tarar and R. Negra, "Design and Implementation of Wideband Stacked Distributed Power Amplifier in 0.13-μm CMOS Using Uniform Distributed Topology," IEEE Trans. Microw. Theory Tech., vol. 65, no. 12, pp. 5212-5222, 2017.
  65. T. Johansson and J. Fritzin, "A review of watt-level CMOS RF power amplifiers," IEEE Trans. Microw. Theory Tech., vol. 62, no. 1, pp. 111-124, 2013.
  66. M. H. Montaseri, "Analysis and design of stacked MOS mm-wave power amplifiers," 2023.
  67. D. P. Nguyen, T. Pham, and A.-V. Pham, "A 28-GHz Symmetrical Doherty Power Amplifier Using Stacked-FET Cells," IEEE Trans. Microw. Theory Tech., vol. 66, no. 6, pp. 2628-2637, 2018, doi: 10.1109/TMTT.2018.2816024.
  68. X. Wei, Y. Luo, Y. Wu, G. Yuan, R. Chang, and G. Hong, "A new continuous Class-E mode based on the general theory of high-efficiency continuous power amplifier," Int. J. Circuit Theory Appl., vol. 52, no. 1, pp. 65-78, 2024.
  69. M. G. Sadeque, Z. Yusoff, M. Roslee, and N. S. R. Hadi, "Design of a broadband continuous class-F RF power amplifier for 5G communication system," in 2019 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 2019, pp. 145-148.
  70. J. Luo, Z. Zhang, X. Xuan, and C. Gu, "Design of a broadband high-efficiency power amplifier based on continuous class-EF mode," IEICE Electron. Express, pp. 21-20240044, 2024.
  71. S. Kang, G. Jeong, and S. Hong, "Study on dynamic body bias controls of RF CMOS cascode power amplifier," IEEE Microw. Wirel. Components Lett., vol. 28, no. 8, pp. 705-707, 2018.
  72. N. L. K. Nguyen, C. Cui, D. P. Nguyen, A. N. Stameroff, and A.-V. Pham, "A 7-115-GHz distributed amplifier with 24-dBm output power using quadruple-stacked HBT in InP," IEEE Microw. Wirel. Technol. Lett., 2023.
  73. D. P. Nguyen, T. Pham, and A.-V. Pham, "A Ka-band asymmetrical stacked-FET MMIC Doherty power amplifier," in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 398-401. doi: 10.1109/RFIC.2017.7969102.
  74. G. van der Bent, P. de Hek, and F. E. van Vliet, "Design procedure for integrated microwave GaAs stacked-FET high-power amplifiers," IEEE Trans. Microw. Theory Tech., vol. 67, no. 9, pp. 3716-3731, 2019.
  75. W. Lee et al., "High-efficiency stacked power amplifier IC with 23% fractional bandwidth for average power tracking application," IEEE Access, vol. 7, pp. 176658-176667, 2019.
  76. M. H. Montaseri, R. Vuohtoniemi, J. Aikio, T. Rahkonen, and A. Pärssinen, "Design of multi-stacked CMOS mm-wave power amplifiers for phased array applications using triple-well process," in 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), IEEE, 2018, pp. 1-5.
  77. J. Kim, "Broadband Millimeter-Wave Power Amplifier Using Modified 2D Distributed Power Combining," Electronics, vol. 9, no. 6, p. 899, 2020.
  78. K. Oh, H. Ahn, I. Nam, H. D. Lee, B. Park, and O. Lee, "A dual-mode InGaP/GaAs HBT power amplifier using a low-loss parallel power-combining transformer with IMD3 cancellation method," Electronics, vol. 10, no. 14, p. 1612, 2021.
  79. T. W. Barton and D. J. Perreault, "Four-way microstrip-based power combining for microwave outphasing power amplifiers," IEEE Trans. Circuits Syst. I Regul. Pap., vol. 61, no. 10, pp. 2987-2998, 2014.
  80. S. Shakib, J. Dunworth, V. Aparin, and K. Entesari, "mmWave CMOS power amplifiers for 5G cellular communication," IEEE Commun. Mag., vol. 57, no. 1, pp. 98-105, 2019.
  81. H. Wang, F. Wang, T.-W. Li, H. T. Nguyen, S. Li, and T.-Y. Huang, "Broadband, linear, and high-efficiency mm-Wave PAS in silicon-overcoming device limitations by architecture/circuit innovations," in 2019 IEEE MTT-S International Microwave Symposium (IMS), IEEE, 2019, pp. 1122-1125.
  82. A. Fawzy, S. Sun, T. J. Lim, and Y. X. Guo, "An Efficient Deep Neural Network Structure for RF Power Amplifier Linearization," in 2021 IEEE Global Communications Conference (GLOBECOM), IEEE, 2021, pp. 1-6.
  83. A. Barry, W. Li, J. A. Becerra, and P. L. Gilabert, "Comparison of feature selection techniques for power amplifier behavioral modeling and digital predistortion linearization," Sensors, vol. 21, no. 17, p. 5772, 2021.
  84. M. F. Haider, F. You, S. He, T. Rahkonen, and J. P. Aikio, "Predistortion-based linearization for 5G and beyond millimeter-wave transceiver systems: a comprehensive survey," IEEE Commun. Surv. Tutorials, vol. 24, no. 4, pp. 2029-2072, 2022.
  85. A. Falempin, "Adaptive Pre-Distortion for Power Amplifier Linearization based on Neural Networks," 2022, Université Grenoble Alpes [2020-....].
  86. H. H. Jobaneh, "An Approach to Increase Power-Added Efficiency in a 5 GHz Class E Power Amplifier in 0.18 µm CMOS Technology," IET Circuits, Devices Syst., vol. 2023, pp. 1-10, 2023, doi: 10.1049/2023/5586912.
  87. S. A. Z. Murad, M. F. Ahamd, M. M. Shahimin, R. C. Ismail, K. L. Cheng, and R. Sapawi, "High efficiency CMOS Class E power amplifier using 0.13 µm technology," in 2012 IEEE Symposium on Wireless Technology and Applications (ISWTA), IEEE, 2012, pp. 85-88.
  88. S. Bhardwaj, S. Moallemi, and J. Kitchen, "A review of hybrid supply modulators in CMOS technologies for envelope tracking PAs," IEEE Trans. Power Electron., vol. 38, no. 5, pp. 6036-6062, 2023.
  89. A. Babu, B. G. Shivaleelavathi, and V. Yatnalli, "Efficiency analysis and design considerations of a hysteretic current controlled parallel hybrid Envelope Tracking Power Supply," Eng. Technol. Appl. Sci. Res., vol. 13, no. 1, pp. 9812-9818, 2023.
  90. H. H. Jobaneh, "Power Added Efficiency Enhancement in a 2.4 GHz Class E Power Amplifier in 0.13 µm CMOS Technology," J. Electron. Electromed. Eng. Med. Informatics, vol. 5, no. 1, pp. 13-24, 2023.