Transport is one of the most critical areas of urban life and an essential base for developing and developingsocieties. It is a crucial indicator of the progress and development of cities and their great benefits. It saves from themovement of people and goods and the prosperity of the economy-social, economic and environmental issuesglobally and what we are witnessing in recent times. However, despite the tremendous advancement in technology,it continues to face numerous challenges in developed and developing nations, including our own. The absorptionof the irrigated volume and any defect in the gradient causes many problems such as congestion, delays, trafficjams and the accompanying psychological, economic, social and environmental effects, energy consumption,depletion of natural resources and lifestyle. So transportation has become a concern. And it became a topic ofconcern that imposes the need to think about the preparation and development of the transportation system towardssustainability based on meeting transportation needs. In light of the negative impacts of the sustainable planningengineering dimension on the urban road network in Ramadi and for the Iraqi cities, we have thus attempted tostudy the effect of this project, given the critical impact on sustainable development and the approach used bythinking people and scholars in their studies and documents in Agenda 2030. Through evaluating the data from theresearch region, which comprised 27 Ramadi neighbourhoods, and applying them to the statistical analysis software(SPSS), it discovers that the schematic engineering dimension indicator represented by the hierarchy has direct anddecisive connection significance. The local road area index achieved the most substantial linear relationship,followed by the collective, secondary and major roads indicators. They reached a medium relationship to formulatea sustainable development system based on Ramadi and other Iraqi cities. A decision is making about sustainableurban engineering transportation. And take an approach with whatever is good for the state.
Several modal split models have been created around the world to forecast which mode of transportation will be selected by the trip - maker from among a variety of available modes of transportation. This modeling is essential from a planning standpoint, as transportation systems typically receive significant investment. In this study, the main purpose was to develop a mode choice model using multiple linear regressions for Ramadi city in Iraq. The study area was divided into traffic analysis zones (TAZ) to facilitate data collection. The data was collected through a home interview of the trip makers in their home units through a questionnaire designed for this purpose. The result showed that the most influential factors on the mode choice for the general trips model using multiple linear regressions are car ownership, age, and trip cost. This model gave a good correlation coefficient of 0.829 meaning that the independent variables explain 82.9 of variance in the dependent variable (type of mode), which will help transport planners in developing policies and solutions for future
The city of Fallujah suffers from bad design in their network and it still dominated by the same pattern of the road and street network system that was produced by the previous stages of the development of the city, which is awaiting the necessary and appropriate solutions, which calls for planning to modernize the road network and streets in it that can accommodate the reality of the city’s condition and the proposed expansions for its subsequent urban growth. The transportation network in Fallujah city was chosen as a case study, the network was divided into roads and intersections, the evaluation included two main roads and eleven sectoral roads, eleven arterial roads, and twenty-five intersections. The network was evaluated in three stages, the first stage was traffic flow and service level, the second stage was evaluating the network in terms of road and intersections marking, while the third stage concerned with evaluating the network in terms of sustainability. The HCS 2010 program was applied to evaluate the first stage, while the second and third stages were evaluated based on the field survey. The results of the first stage showed that most parts of the network in the northern zone suffer from traffic problems and have a low level of service, while most parts of the network in the southern zone have a high service level and enjoy high traffic flow. Most parts of the network were suffered from bad marking, which causes many problems for the users of this network. Related to sustainability, we note a lack of interest on the part of designers or decision-makers. It was concluded that traffic solutions should be economically feasible for some parts of the network, which would lead to improving the network’s performance at the level of the three stages.
The development of cities in the infrastructure and urbanization and the increase in the population make people increase in the purchase of the private car, which in turn causes the congestion , pollution , accident and noise especially after 2003, as Iraq's import of cars increased to 5,800,000 cars distributed between the provinces, as 3Anbar province ranked ninth in the development number of cars with 174,000 cars according to the Central Bureau of Statistics of the Ministry of Planning. The university is the largest governmental institution that has the largest traffic volume of vehicles. We have three directions for entering the Anbar university they are east, middle and west directions. Total traffic volume from east, middle and west direction is 2165 vehicles which lead to traffic congestion in Ramadi city and Anbar university. The total traffic volume in private transportation in east, middle and west direction is 727,515 and 923 vehicles respectively. No of students in private transportation in east, middle and west direction is 4617, 3185 and3985 passengers respectively. As results of this research, there are three proposed parks one of them in the Sujaria at east direction, second park in Ramadi center at middle direction and third park in 5km area at west direction. In this paper, we make comparing between private and public transport in terms of fuel costs and time from the origin (the three proposed parks) to destination (Anbar University) assuming that private cars stopped in those three parks by using Park & Ride System and used buses with capacity of 40 passengers to transport students to the university. Depending on no. of passengers in private transportation from the three proposed parks to university we got the No. of buses from east park (Sujaria area), middle park (Ramadi center) and west park (7km area) to university which were 28, 20 and 25 bus respectively because each bus can transport four times.
Urban traffic congestion remains a pressing challenge in Erbil, particularly at signalized intersections where delays contribute to fuel consumption, emissions, and commuter frustration. This study presents a calibrated microsimulation model using PTV VISSIM to replicate field-measured control delays at a key intersection in Erbil. Field data were collected through video-based observations and analyzed to establish baseline performance. The simulation was calibrated using manual adjustments to driver behavior and signal timing parameters, constrained by the student version of the software. The model's accuracy was evaluated through statistical comparison with field data. Results showed a strong correlation (R=0.938) and a high coefficient of determination (R2=0.879), indicating that nearly 88% of the variation in simulated delay could be explained by observed conditions. Error metrics further supported the model's reliability, with a root mean square error (RMSE) of 7.31 seconds per vehicle, a mean absolute error (MAE) of 5.92 seconds, and GEH statistics consistently below 2, well within accepted thresholds for traffic modeling. While the study was limited to a single intersection due to software constraints, the findings offer practical insights for traffic engineers and policymakers. Recommendations include adopting adaptive signal control systems and integrating intelligent transportation technologies to improve intersection performance. Future research should expand the model to multiple intersections, incorporate real-time data, and explore environmental impacts. This study provides a localized, data-driven foundation for improving urban mobility in Erbil through simulation-based planning.
Road network infrastructure is the key indicator of sustainable spatial development, as it affects the economy, environment, and society activities. These can be optimized through minimizing the time the vehicles take on the road, which in turn requires high connectivity and then high accessibility between the nodes of the road network. However, it is necessary to put a development strategy that helps the decision makers to produce relative high accessibility over the development time. In this paper, the vulnerabilities regarding the connectivity and spatial accessibility were pinpointed and analyzed, optimum priorities in sequent new linkages adding are made for developing a sustainable infrastructure with faster enhancement for the spatial accessibility. The results have become a tough guidance for decision makers, and can be adopted as a first step for legislating a strategy for sustainable transportation system
Recently, the sustainability issue has become crucial to operation, which motivates researchers to search for naturally generated, sustainable materials, especially in automotive applications outside of reduced prices and enhanced performance. Glass-linen/Polyvinyl Butyral hybrid composites' mechanical characteristics were examined in relation to the effect of linen fiber loading. The composite and hybrid composite samples of linen/glass fiber reinforced PVB film were created using a hot press with various layering patterns. The results were high impact values with increased both tensile and flexural strength values. Compared to other hybrid composites, the mechanical behaviors of the H1 (Glass / Linen) hybrid have a greater tensile strength measuring 401.30 MPa, while, H2 (Glass / Linen/ Glass) hybrids are found to have the highest flexural strength, measuring 160.80 MPa. An optical and scanning electron microscope morphological analysis on linen hybrid composites revealed good results. This indicated decreased rates of delamination between the fibers and matrix layers. The loading of the fibers was shown to have varying effects on the composite's mechanical behaviors. The linen/glass composites also demonstrated strong interfacial adhesion, which enabled the PVB-phenolic resin to penetrate the fiber bundles and produce a matrix with the good interlocking of the fibers