Scientists have recently started looking for new ecologically friendly and sustainable materials. Construction materials are among the numerous widely employed materials, and it is normally acknowledged that they have an apparent detrimental influence on the environment. Thus, the contribution of this paper is to describe the palm frond natural fibers' effect on concrete's mechanical characteristics. Since concrete is a brittle material, the goal of this research is to increase the tensile strength of concrete by using organic fibers (palm frond fibers), a waste product. In order to determine the ideal percentage of fibers, the following percentages were tested: 0.25, 0.5, 0.75, and 1% by volume of concrete. On dry density, compressive strength, and tensile strength, the impacts of fibers were investigated. The density of concrete decreased with increasing fiber ratios. The compressive strength slightly decreased, while the splitting strength significantly improved. According to the results, the best amount of palm frond fibers that can be add to concrete is 0.75% by volume.
This paper investigates ultimate strength of lightweight concrete specimens: cubes, cylinders, and prisms wrapped by different layers CFRP respect to several curing periods. The specimens were prepared and tested under compressive and flexural loading at the ages of 7 days and 28 days with varying confinement levels (from unconfined; 0L to double-layer of CFRP, i.e., 2L). The results showed that all three factors: confinement level, specimen geometry and curing age had a significant effect on both compressive strength as well as flexural strength. Indigenous soft soil was wrapped with various CFRP wraps to study the change in failure mode from brittle to ductile with an increase in confinement and two-layer WR-CFRPs exhibited the maximum gains in compressive and flexure-up to 48% compressive, 380% of flexural strength when compared with unconfined specimens. Cylindrical samples prove always more pronounced strengthening effect than cubes, probably because of having a more even stress field and less influence to the corner effects. Besides, the confinement effect became more significant when specimens were left to cure for 28 days, highlighting initiation of concrete maturity requirement for best CFRP development. The findings indicated that early-age confinement (7-day, 2L) achieved strength equal or superior to shear-critical fully cured unconfined specimens, and confirmed the potential of CFRP in emergency repair and retrofitting. However, the ultimate strengths were the best when using both multi-layer CFRP confinement and full curing. These results highlight the synergistic relationship between geometry optimization, curing regimen and advanced fiber reinforcements in enhancing the structural response of lightweight concrete structure.
Friction welding method is one of the most efficient and effective techniques for joining similar and dissimilar materials. The AISI 304 austenitic stainless-steel is a most common type of austenitic stainless steel which is used in various practical applications like automotive, food manufacturing, chemical applications, etc. Therefore, the impact strength and microstructure behavior of friction welded AISI 304 austenitic stainless-steel joints were investigated. The specimens were divided into two groups, the surface of the first group was flat while the interface of the second group was designed by fabricating a pin and hole. The effect of different forging pressure (192.4, 240.5, 288.6 and 384.8 MPa) on impact toughness and microstructure behavior of AISI 304 were examined using Charpy impact tester and optical microscope, respectively. The minimum impact strength was observed at 240.5 MPa for flat interface samples whereas, the maximum impact strength value (0.5675 J/mm2) was at 388.6 MPa forging pressure for pin interface samples. In addition, the ductile mode in pin type for all cases while both, brittle and ductile mode in the flat joint was noticed. Finally, it was concluded that the impact strength improved with designing a pin and hole shape at the joint interface.