In this study, thermal-hydraulic performance of a confined slot jet impingement with Al2O3-water nanofluid has been numerically investigated over Reynolds number ranges of 100-1000. Two triangular ribs are mounted at a heated target wall; one rib located on the right side of the stagnation point and another one located on left side of the stagnation point. The governing momentum, continuity and energy equations in the body-fitted coordinates terms are solved using the finite volume method and determined iteratively based on SIMPLE algorithm. In this study, effects of Reynolds number, rib height and rib location on the thermal and flow characteristics have been displayed and discussed. Numerical results show an increase in the average Nusselt number and pressure drop when Reynolds number and rib height increases. In addition, the pressure drop and average Nusselt number increases with decrease the space between the stagnation point and rib. The maximum enhancement of the average Nusselt number is up to 39 % at Reynolds number of 1000, the rib height of 0.3, rib location of 2 and nanoparticles volume fraction of 4%. The best thermal-hydraulic performance of the impinging jet can be obtained when the rib height of 0.2 and rib location of 2 from the stagnation point with 4% nanoparticles volume fraction.
Heat transfer through porous media has gained considerable interest in recent years due to its ability to enhance the thermal performance in various engineering applications. There are two key advantages of using porous materials. First, the effective heat dissipation surface area is larger than that of traditional solid fins, which intensifies convective heat transfer. Second, the irregular motion of fluid around the internal porous structure improves mixing, promoting greater thermal uniformity by breaking the boundary layer and generating vortices, while in contrast, there is a drop in the pressure of the working fluid. This review provides a structured overview of the developments in heat transfer within porous media, focusing on two categories of working fluids: conventional fluids and nanofluids. Each category is further classified according to the flow regime involved: natural, forced and mixed convection. For conventional fluids, porous structures demonstrate considerable improvements in Nusselt number and thermal efficiency in compact heat exchangers and flow channels. For nanofluids, enhanced thermal conductivity and the possibility of coupling with magnetic fields (MHD) show promising results, especially under forced and mixed convection conditions. The findings from this review reveal that while both conventional and nanofluid systems benefit from the use of porous media, nanofluids exhibit superior heat transfer capabilities when properly optimized. Additionally, the effectiveness of porous media strongly depends on geometric properties, porosity, flow regime, and thermal boundary conditions. This paper offers a comparative understanding of these systems and identifies potential directions for future research in advanced thermal system design.