Cover
Vol. 16 No. 2 (2025)

Published: December 15, 2025

Pages: 213-224

Research Paper

Latency Budgeting of Dynamic Cloud Radio Access Network

Abstract

5G networks aim to improve capacity, reliability, and energy efficiency while reducing latency and increasing connection density. A vital goal is enabling real time communication, which demands extremely low latency, particularly within Dynamic Cloud Radio Access Network (DC-RAN) architectures designed for high coverage density. The FrontHaul (FH) link is a critical component for achieving this, as different FH technologies directly impact performance, latency and coverage in dense areas. This paper focuses on latency budgeting within a DC—RAN, analysing how FH technologies – millimetre wave (mmWave), optical fiber; and Free Space Optics (FSO) – affect overall End-to-End delay (E2E) and Round-Trip Time (RTT). By calculating the propagation and processing delays for various cell types, the analysis provides a comparative performance evaluation. The key finding is that, while processing delay dominates the total latency, the choice of FH link significantly influences performance and practicality. mmWave and FSO are suitable for short-range, dense deployments, whereas optical fiber offers stable, low latency over longer distances. Thus, the optimal FH selection depends on specific network objectives, including coverage, density, and weather conditions; toward meeting Ultra-Reliable Low-Latency Communication (URLLC) targets.

References

  1. M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and Low-Latency Wireless Communication: Tail, Risk, and Scale,” Proceedings of the IEEE, vol. 106, no. 10, pp. 1834–1853, Oct. 2018, doi: 10.1109/JPROC.2018.2867029.
  2. I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low latency towards 5G: RAN, core network and caching solutions,” IEEE Communications Surveys & Tutorials, 2018, Accessed: Oct. 18, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8367785/
  3. B. K. J. Al-Shammari, N. Al-Aboody, and H. S. Al-Raweshidy, “IoT Traffic Management and Integration in the QoS Supported Network,” IEEE Internet Things J, vol. 5, no. 1, 2018, doi: 10.1109/JIOT.2017.2785219.
  4. “IMT Traffic estimates for the years 2020 to 2030.” Accessed: Oct. 19, 2025. [Online]. Available: https://www.itu.int/pub/R-REP-M.2370
  5. H. Fourati, R. Maaloul, and L. Chaari, “A survey of 5G network systems: challenges and machine learning approaches,” International Journal of Machine Learning and Cybernetics, vol. 12, no. 2, 2021, doi: 10.1007/s13042-020-01178-4.
  6. A. A. Zaidi, R. Baldemair, M. Andersson, S. Faxér, V. Moles-Cases, and Z. Wang, “Designing for the future: the 5G NR physical layer,” Ericsson Technology Review, vol. June, 2017.
  7. A. Fayad, T. Cinkler, J. Rak, and M. Jha, “Design of cost-efficient optical fronthaul for 5G/6G networks: An optimization perspective,” Sensors, 2022, Accessed: Oct. 19, 2025. [Online]. Available: https://www.mdpi.com/1424-8220/22/23/9394
  8. R. Ali, Y. Bin Zikria, A. K. Bashir, S. Garg, and H. S. Kim, “URLLC for 5G and Beyond: Requirements, Enabling Incumbent Technologies and Network Intelligence,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3073806.
  9. R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, and M. Zorzi, “Achieving ultra-low latency in 5G millimeter wave cellular networks,” IEEE Communications Magazine, 2017, Accessed: Oct. 19, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7876982/
  10. P. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, “Design considerations for a 5G network architecture,” IEEE Communications Magazine, 2014, Accessed: Oct. 19, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6957145/
  11. G. K. Chang and L. Cheng, “Fiber-wireless integration for future mobile communications,” 2017 IEEE Radio and Wireless Symposium (RWS), 2017, Accessed: Oct. 19, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/7885932/
  12. L. De Vito, S. Rapuano, and L. Tomaciello, “One-way delay measurement: State of the art,” IEEE Transactions on Instrumentation and Measurement, 2008. doi: 10.1109/TIM.2008.926052.
  13. N. Molner, A. de la Oliva, I. Stavrakakis, and A. Azcorra, “Optimization of an integrated fronthaul/backhaul network under path and delay constraints,” Ad Hoc Networks, vol. 83, pp. 41–54, Feb. 2019, doi: 10.1016/j.adhoc.2018.08.025.
  14. N. Kazemifard and V. Shah-Mansouri, “Minimum delay function placement and resource allocation for Open RAN (O-RAN) 5G networks,” Computer Networks, vol. 188, p. 107809, Apr. 2021, doi: 10.1016/j.comnet.2021.107809.
  15. Y. Fu, D. Guo, Q. Li, L. Liu, S. Qu, and W. Xiang, “Digital Twin Based Network Latency Prediction in Vehicular Networks,” Electronics (Switzerland), vol. 11, no. 14, 2022, doi: 10.3390/electronics11142217.
  16. O. O. Erunkulu, A. M. Zungeru, C. K. Lebekwe, M. Mosalaosi, and J. M. Chuma, “5G Mobile Communication Applications: A Survey and Comparison of Use Cases,” IEEE Access, 2021. doi: 10.1109/ACCESS.2021.3093213.
  17. M. El-Moghazi and J. Whalley, “The ITU IMT-2020 standardization: Lessons from 5G and future perspectives for 6G,” Journal of Information Policy, vol. 12, pp. 281–320, Dec. 2022, doi: 10.5325/JINFOPOLI.12.2022.0005.
  18. A. Kurian, “Latency analysis and reduction in a 4G network,” Master’s thesis, Delft University of Technology, 2018, Accessed: Oct. 19, 2025. [Online]. Available: https://repository.tudelft.nl/file/File_410d2c24-7552-4c35-aee0-a0aaa8b59087
  19. K. Lai and M. Baker, “Measuring link bandwidths using a deterministic model of packet delay,” ACM SIGCOMM Computer Communication Review, pp. 283–294, Aug. 2000, doi: 10.1145/347059.347557.
  20. X. Jiang et al., “Low-latency networking: Where latency lurks and how to tame it,” Proceedings of the IEEE, vol. 107, no. 2, pp. 280–306, Feb. 2019, doi: 10.1109/JPROC.2018.2863960.
  21. J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and backhaul requirements of flexibly centralized radio access networks,” IEEE Wireless Communications, 2015, Accessed: Oct. 19, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7306544/
  22. M. Series, “IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU-R M.2083-0, 2015, Accessed: Oct. 19, 2025. [Online]. Available: http://chenweixiang.github.io/docs/R-REC-M.2083-0-201509.pdf
  23. J. G. Andrews et al., “What will 5G be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, 2014, doi: 10.1109/JSAC.2014.2328098.
  24. N. Patriciello, S. Lagen, L. Giupponi, and B. Bojovic, “5G new radio numerologies and their impact on the end-to-end latency,” 2018 IEEE 23rd International Workshop on Computer Aided Modeling, 2018, Accessed: Oct. 19, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8514979/
  25. B. K. J. Al-Shammari, I. Hburi, H. R. Idan, and H. F. Khazaal, “An Overview of mmWave Communications for 5G,” in 2021 International Conference on Communication & Information Technology (ICICT), IEEE, Jun. 2021, pp. 133–139. doi: 10.1109/ICICT52195.2021.9568459.
  26. J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta, and R. W. Heath, “Modeling and analyzing millimeter wave cellular systems,” IEEE Transactions on Communications, 2016, Accessed: Oct. 19, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7593259/
  27. “Common Public Radio Interface.” Accessed: Oct. 19, 2025. [Online]. Available: https://www.cpri.info/
  28. “White Paper Fiber in 5G Networks.” Accessed: Oct. 19, 2025. [Online]. Available: https://comms.viavisolutions.com/WhitePaper-Fiber-in-5G-Networks-vi106984
  29. T. Kawanishi, A. Kanno, P. T. Dat, T. Umezawa, and N. Yamamoto, “Wired and wireless seamless networks by photonics,” Journal of Physics: Photonics, vol. 2, p. 12001, 2020, doi: 10.1088/2515-7647/AB5C0E.
  30. T. Kawanishi, A. Kanno, Y. Yoshida, and K. Kitayama, “Impact of wave propagation delay on latency in optical communication systems,” Optical Metro Networks and Short-Haul Systems V, 2013, doi: 10.1117/12.1000190.
  31. M. N. O. Sadiku, S. M. Musa, and S. R. Nelatury, “Free space optical communications: an overview,” European Scientific Journal, 2016, Accessed: Oct. 19, 2025. [Online]. Available: https://core.ac.uk/download/pdf/236412639.pdf
  32. A. Midasala, “Theoretical Model of an Experiment to Test the Isotropy of the Speed of Light,” European Journal of Applied Physics, vol. 5, no. 6, 2023, doi: 10.24018/ejphysics.2023.5.6.288.
  33. S. Burdah, R. Alamtaha, O. N. Samijayani, S. Rahmatia, and A. Syahriar, “Performance analysis of Q factor optical communication in free space optics and single mode fiber,” Universal Journal of Electrical and Electronic Engineering, vol. 6, no. 3, 2019, doi: 10.13189/ujeee.2019.060311.
  34. G. Fontanesi, A. Zhu, and H. Ahmadi, “Outage Analysis for Millimeter-Wave Fronthaul Link of UAV-Aided Wireless Networks,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3001342.
  35. S. Derouiche, S. Kameche, and H. E. Adardour, “FSO and MmWave Technologies for 5G Mobile Networks: A Survey,” in 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), 2023. doi: 10.1109/ICAECCS56710.2023.10105065.
  36. K. Ahmed, “Radio-over-Free-Space Optical Fronthauling for Cloud Radio Access Networks,” Thesis, McMaster University, 2019, Accessed: Oct. 19, 2025. [Online]. Available: https://macsphere.mcmaster.ca/handle/11375/24831
  37. R. Singh, W. Lehr, D. Sicker, and K. M. S. Huq, “Beyond 5G: The Role of THz Spectrum,” SSRN Electronic Journal, 2019, doi: 10.2139/ssrn.3426810.
  38. D. Patel and K. Elgazzar, “Road Boundary Detection using Camera and mmwave Radar,” in 2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA), 2022. doi: 10.1109/ICCSPA55860.2022.10019159.
  39. A. Batra et al., “Short-Range SAR Imaging from GHz to THz Waves,” IEEE Journal of Microwaves, vol. 1, no. 2, 2021, doi: 10.1109/JMW.2021.3063343.
  40. M. Umar, M. Laabs, N. Neumann, and D. Plettemeier, “A Low-Cost 60-GHz Modular Front-End Design for Channel Sounding,” IEEE Trans Compon Packaging Manuf Technol, vol. 14, no. 2, 2024, doi: 10.1109/TCPMT.2024.3353332.
  41. S. A. Al-Gailani et al., “A Survey of Free Space Optics (FSO) Communication Systems, Links, and Networks,” IEEE Access, 2021. doi: 10.1109/ACCESS.2020.3048049.
  42. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Communications Surveys and Tutorials, vol. 16, no. 4, 2014, doi: 10.1109/COMST.2014.2329501.
  43. A. Jahid, M. H. Alsharif, and T. J. Hall, “A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction,” Journal of Network and Computer Applications, 2022. doi: 10.1016/j.jnca.2021.103311.