Cover
Vol. 16 No. 2 (2025)

Published: December 15, 2025

Pages: 202-212

Research Paper

Influence Study of the Antimony Element Sb on the Tribological and Mechanical characteristics of the Al-11% Si Alloy

Abstract

Aluminum alloys are widely used in various industrial applications due to their low weight and favorable mechanical properties. Consequently, extensive research has been conducted to further enhance these properties. In this study, the Al-11%Si alloy was modified by adding varying amounts of antimony (Sb) metal powder: (0.05, 0.1, 0.2, 0.3, and 0.4 wt %), to enhance the mechanical characteristics including the tribological and tensile behavior. The mechanical properties of the modified alloys were thoroughly evaluated. The optimal mechanical performance was achieved with the addition of 0.3% and 0.4% Sb. The casting process involved melting a measured amount of the Al-11%Si alloy at 720 °C in an electric furnace. Antimony powder was then introduced into the melt, which was stirred at 250 r.p.m. for 5 minutes at three stages to form a vortex and ensure uniform dispersion of the modifier. The melt temperature was carefully monitored and controlled using a thermocouple before being poured into a carbon steel mold. Several tests were conducted on the modified alloys, including microstructural analysis, hardness, tensile strength, surface roughness, and wear resistance assessments. The addition of the antimony element (Sb) was found to significantly refine the microstructure and transform the morphology of silicon particles from a flake-like or lamellar form to a more fibrous structure. Furthermore, Sb additions of 0.05%, 0.1%, and 0.2% wt improved micro hardness (Hv), yield strength (YS), and ultimate tensile strength (UTS), while simultaneously reducing surface roughness (Ra) and wear-rate (Wr).

References

  1. JU. Ejiofor and R. G. Reddy, "Developments in the processing and properties of particulate Al-Si composite," JOM, vol. 49, pp. 31-36, Nov. 1997, doi: 10.1007/s11837-997-0021-y.
  2. C. L. Pereira, R. R. Menezes, A. M. A. Silva, and A. N. Klein, "Comparing the roles of Sb and Bi on microstructures and application properties of the Al-15% Si alloy," J. Alloys Compd., vol. 878, p. 160343, Apr. 2021, doi: 10.1016/j.jallcom.2021.160343.
  3. T. P. D. Rajan, R. M. Pillai, B. C. Pai, K. G. Satyanarayana, and P. K. Rohatgi, "Fabrication and characterisation of Al-7Si-0.35Mg/fly ash metal matrix composites processed by different stir casting routes," Compos. Sci. Technol., vol. 67, pp. 3369-3377, Dec. 2007, doi: 10.1016/j.compscitech.2007.03.028.
  4. M. Elmadagli, "Microstructure studies of wear mechanisms in cast aluminum alloys," Ph.D. dissertation, Dept. Mech. Eng., Univ. of Toronto, Toronto, ON, Canada, 2005.
  5. M. H. Abdelaziz, A. M. Samuel, H. W. Doty, S. Valtierra, and F. H. Samuel, "Effect of additives on the microstructure and tensile properties of Al-Si alloys," J. Mater. Res. Technol., vol. 8, no. 2, pp. 2255-2268, Apr. 2019, doi: 10.1016/j.jmrt.2019.03.003.
  6. E. Samuel, A. M. Samuel, H. W. Doty, S. Valtierra, and F. H. Samuel, "Intermetallic phases in Al-Si based cast alloys: new perspective," Int. J. Cast Met. Res., vol. 27, no. 2, pp. 107-117, 2014, doi: 10.1179/1743133613Y.0000000083.
  7. J. H. Jeon, J. H. Shin, and D. H. Bae, "Si phase modification on the elevated temperature mechanical properties of Al Si hypereutectic alloys," Mater. Sci. Eng. A, vol. 748, pp. 367-370, Mar. 2019, doi: 10.1016/j.msea.2019.01.119.
  8. F. Bertelli, E. S. Freitas, N. Cheung, M. Α. Arenas, A. Conde, and J. de Damborenea, "Microstructure, tensile properties and wear resistance correlations on directionally solidified Al Sn (Cu; Si) alloys," J. Alloys Compd., vol. 695, pp. 3621-3631, 2017, doi: 10.1016/j.jallcom.2016.11.399.
  9. X. Chen, H. Geng, and Y. Li, "Study on the eutectic modification level of Al 7Si alloy by computer aided recognition of thermal analysis cooling curves," Mater. Sci. Eng. A, vol. 419, pp. 283-289, Mar. 2006, doi: 10.1016/j.msea.2005.12.036.
  10. L. Lu and A. K. Dahle, "Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al-Si foundry alloys," Mater. Sci. Eng. A, vols. 435-436, pp. 288-296, Nov. 2006, doi: 10.1016/j.msea.2006.07.081.
  11. E. Karakoese and M. Keskin, "Effect of solidification rate on the microstructure and microhardness of a melt spun Al-8Si-1Sb alloy," J. Alloys Compd., vol. 479, no. 1-2, pp. 230-236, Jun. 2009, doi: 10.1016/j.jallcom.2009.01.006.
  12. M. A. O. de Alfaia, R. Oliveira, T. S. Lima, F. E. Mariani, L. C. Casteletti, N. Cheung, and A. Garcia, "Effects of cooling rate and microstructure scale on wear resistance of unidirectionally solidified Al 3.2 wt.% Bi-(1;3) wt.% Pb alloys," Mater. Today Commun., vol. 25, p. 101659, 2020, doi: 10.1016/j.mtcomm.2020.101659.
  13. B. P. Reis, M. M. Lopes, A. Garcia, and C. A. dos Santos, "The correlation of microstructure features, dry sliding wear behavior, hardness and tensile properties of Al 2 wt% Mg-Zn alloys," J. Alloys Compd., vol. 764, pp. 267-278, Oct. 2018, doi: 10.1016/j.jallcom.2018.06.075.
  14. R. Haghayeghi and G. Timelli, "An investigation on primary Si refinement by Sr and Sb additions in a hypereutectic Al-Si alloy," Mater. Lett., vol. 283, Art. no. 128779, 2021, doi: 10.1016/j.matlet.2020.128779.
  15. J.-N. Zhu, Y.-C. Zhang, H. Guo, L. J. Xu, and S. R. Chen, "Microstructure and wear behaviour of Al-20Mg2Si alloy with combined Zr and Sb additions," J. Alloys Compd., vol. 767, pp. 1109-1116, 2018, doi: 10.1016/j.jallcom.2018.07.163.
  16. C.-Y. Yang, H.-Y. Tsai, and T.-F. Shyu, "Effects of Sr and Sb modifiers on the sliding wear behavior of A357 alloy under varying pressure and speed conditions," Wear, vol. 261, no. 11-12, pp. 1348-1358, 2006, doi: 10.1016/j.wear.2006.02.012.
  17. A. Riahi, "Characterization of tribological behaviour of graphitic aluminum matrix composite, grey cast iron, and aluminum silicon alloys," Ph.D. dissertation, Dept. Mech. Eng., [Univ. Name], [City], [State/Country], 2002.
  18. S. A. Kori and T. Chandrashekharaiah, "Studies on the dry sliding wear behavior of hypoeutectic and eutectic Al-Si alloys," Wear, vol. 263, no. 6, pp. 745-755, May 2007, doi: 10.1016/j.wear.2007.01.030
  19. Metals Handbook, vol. 15, Casting, 9th ed. Metals Park, OH, USA: American Society for Metals, 1988.
  20. T. M. Chandrashekharaiah and S. A. Kori, "Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic Al-Si alloys," Tribol. Int., vol. 42, no. 1, pp. 59-65, Jan. 2009, doi: 10.1016/j.triboint.2008.06.012.
  21. A. Moharrami, A. A. Anvar, M. Salehi, and F. Karimzadeh, "Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing," Mater. Chem. Phys., vol. 250, p. 123066, 2020, doi: 10.1016/j.matchemphys.2020.123066.
  22. A. P. Hekimoğlu and M. Çalış, "Effects of titanium addition on structural, mechanical, tribological, and corrosion properties of Al-25Zn-3Cu and Al-25Zn-3Cu-3Si alloys," Trans. Nonferrous Met. Soc. China, vol. 30, no. 2, pp. 303-317, Feb. 2020, doi: 10.1016/S1003-6326(20)64988-9.
  23. M. R. Moazami, M. Tavakoli, A. A. Anvar, and M. Salehi, "Enhancing the elevated temperatures tribological properties of Al-Mg2Si composites by in-situ addition of Ti-based intermetallics and hot working," J. Mater. Res. Technol., vol. 21, pp. 1381-1394, 2022, doi: 10.1016/j.jmrt.2022.05.061.
  24. S. Bhaskar, M. Kumar, and A. Patnaik, "A review on tribological and mechanical properties of Al alloy composites," in Proc. Mater. Today: Proc., 2020, pp. 810-815, doi: 10.1016/j.matpr.2020.06.053.
  25. J. Peng, J. Jianfei, et al., "Improved mechanical and frictional properties of hypereutectic Al-Si alloy by modifying Si phase with La addition," Materials Today Communications, vol. 38, 2024, Art. no. 107857.
  26. P. Thasleem, et al., "Effect of heat treatment and electric discharge alloying on the lubricated tribology of Al-Si alloy fabricated by selective laser melting," Wear, vol. 494, 2022, Art. no. 204244.
  27. W. Cheng, C. Y. Liu, and Z. J. Ge, "Optimizing the mechanical properties of Al-Si alloys through friction stir processing and rolling," Materials Science and Engineering: A, vol. 804, 2021, Art. no. 140786.
  28. V. C. Srivastava, R. K. Mandal, and S. N. Ojha, "Microstructure and mechanical properties of Al-Si alloys produced by spray forming process," Materials Science and Engineering: A, vol. 304, pp. 555-558, 2001.
  29. E. A. Elsharkawi, M. F. Ibrahim, A. M. Samuel, H. W. Doty, and F. H. Samuel, "Understanding the effect of Be addition on the microstructure and tensile properties of Al-Si-Mg cast alloys," Int. J. Metalcasting, vol. 16, no. 4, pp. 1777-1795, Nov. 2021, doi: 10.1007/s40962-021-00715-3.
  30. M.-S. Baek, A. W. Shah, Y.-K. Kim, S. K. Kim, B. H. Kim, and K.-A. Lee, "Microstructures, tensile properties and strengthening mechanisms of novel Al-Mg alloys with high Mg content," J. Alloys Compd., vol. 950, p. 169866, Jul. 2023, doi: 10.1016/j.jallcom.2023.169866.
  31. S. C. Hansen and C. R. Loper Jr., "Effect of antimony on the phase equilibrium of binary Al-Si alloys," Calphad, vol. 24, no. 3, pp. 339-352, Sep. 2000, doi: 10.1016/S0364-5916(01)00009-8.
  32. M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll, and W. Kurz, "The coupled zone of rapidly solidified Al-Si alloys in laser treatment," Acta Metall. Mater., vol. 40, no. 7, pp. 1637-1644, Jul. 1992, doi: 10.1016/0956-7151(92)90106-0.
  33. S. P. Nikanorov, M. P. Volkov, V. N. Gurin, Y. A. Burenkov, L. I. Derkachenko, B. K. Kardashev, L. L. Regel, and W. R. Wilcox, "Structural and mechanical properties of Al-Si alloys obtained by fast cooling of a levitated melt," Mater. Sci. Eng. A, vol. 390, nos. 1-2, pp. 63-69, 2005, doi: 10.1016/j.msea.2004.07.037.
  34. R. Trivedi, F. Jin, and I. E. Anderson, "Dynamical evolution of microstructure in finely atomized droplets of Al-Si alloys," Acta Mater., vol. 51, no. 2, pp. 289-300, Feb. 2003, doi: 10.1016/S1359-6454(02)00226-4.
  35. T.-A. Pan and Y.-C. Tzeng, "Impact of Sr and La modification and post-heat treatment on microstructural evolution and thermal conductivity of hypoeutectic Al-Si alloys," J. Alloys Compd., vol. 1032, p. 181114, Jun. 2025, doi: 10.1016/j.jallcom.2025.181114.
  36. C. Li, H. Hou, L. Liu, C. Huang, Y. Ren, J. Du, and C. Yin, "Effect of Sr modification on the microstructures, mechanical properties, and thermal conductivity of hypoeutectic Al-13.6Cu-6Si alloys," J. Mater. Eng. Perform., vol. 34, pp. 7712-7723, 2025, doi: 10.1007/s11665-024-09752-5.
  37. A. Sarkar, S. Manivannan, and S. P. Kumaresh Babu, "Modification of Al-11.1Si alloy with sodium through casting route," Mater. Today Proc., vol. 44, pt. 1, pp. 2781-2784, 2021, doi: 10.1016/j.matpr.2020.12.757.
  38. S. El-Hadad, A. M. Samuel, F. H. Samuel, H. W. Doty, and V. Songmene, "Effect of Bi and Ca on the solidification parameters of Sr-modified Al-Si-Cu (Mg) alloys," Materials, vol. 15, no. 19, p. 6903, 2022, doi: 10.3390/ma15196903.
  39. H. V. Guthy, "Evolution of the eutectic microstructure in chemically modified and unmodified aluminum silicon alloys," M.Sc. thesis, Worcester Polytech. Inst., Worcester, ΜΑ, 2002.
  40. S. A. Kori and T. M. Chandrashekharaiah, "Studies on the dry sliding wear behavior of hypoeutectic and eutectic Al-Si alloys," Wear, vol. 263, no. 1-6, pp. 745-755, Sep. 2007, doi: 10.1016/j.wear.2006.11.026.