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Water treatment sludge (WTS) is a byproduct generated 
during wastewater treatment. In recent years, researchers 
have explored the potential of using WTS as a soil stabilizer 
to improve the geotechnical properties of soils. This review 
will examine the current knowledge on using WTS for this 
purpose. The organic matter content of WTS is usually high 
and can range from 30% to 60%. The high organic matter 
content makes WTS a potential source of nutrients for 
plants, and it can also enhance soil structure and water 
retention. Another important consideration is the 
environmental impact of using WTS. The use of WTS can be 
an eco-friendly alternative to chemical stabilizers, which 
can have adverse effects on the environment. However, 
there are concerns about the potential for heavy metal 
contamination in WTS. To mitigate this risk, it is 
recommended to thoroughly test WTS before using it as a 
soil stabilizer. Finally, using WTS as a soil stabilizer can 
potentially improve the geotechnical properties of soils. 
However, it is essential to consider factors such as the type 
and dosage of WTS, the soil type, and the environmental 
impact before using it. Further research is needed to 
explore the potential of using WTS in different soil types 
and environmental conditions. 
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1. Introduction    
Sludge is created in large quantities during 
wastewater treatment and must be disposed of. 
Using sludge on agricultural land, essential 
components such as organic matter, N, P, and other 
plant nutrients may be recycled. Heavy metals tend 
to accumulate in the formed sludge, and heavy 
metal levels rise due to the physical-chemical 
processes utilized in wastewater treatment. The 
production of sludge from water treatment plants 
(WTP) in IRAQ [1] is predicted to exceed 78 million 
tons. This output is more than that of other nations, 
according to [2], but like other estimates in nations 

like the Netherlands and Japan [3]. There are few 
publicly available statistics on managing drinking 
sludge in Iraq and most other countries [1,4].  
The remainder of this waste is dumped into rivers 

directly downstream of the place of usage, with 

some of it ending up in landfills [5]. The sludge 

composition is influenced by the treatment 

chemicals employed and the input water quality 

[6]. This waste comprises both organic and 

inorganic components [7], primarily Fe, Al, Mn, and 

Cu [8], as well as bacteria [10] and polycyclic 

aromatic hydrocarbons [9]. Ferric or aluminum 
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oxide-based coagulants are often used in water 

station facilities in Brazil [11], leading to the 

sludge's popular names of ferric sludge and 

aluminum sludge. In Brazil, sludge from water 

treatment plants is considered a non-hazardous 

waste [12], and its producers should adhere to 

regulations that encourage reduced production, 

reversal, and final disposal of unrecoverable 

components [13]. 

 

2. Literature Review 
 

The literature regularly discusses the reuse of 

"water treatment sludge" [14]. The recovery of its 

components [15], as well as its application as an 

absorbent material to treat leachate [16], organic 

contaminants in surface water [17], CO2 gas [18], 

and metal ions [19], including lead [20] and nickel 

ions [21], are a few examples. The manufacturing of 

ceramic materials, including common bricks [22], 

nonstructural and decorative bricks [23], cement-

free geopolymers [24], and glazed tiles [25] has 

found success worldwide when WTS partially 

replaces natural soils for civil building applications. 

Research in Brazil has suggested WTS as a material 

for civil construction [26] and assessed this waste's 

capacity to provide a variety of products [27], 

including structural bricks [28].  

WTS used in alkaline soils also seems theoretically 

viable given that it can help restore damaged 

mining regions by immobilizing inorganic 

phosphorus in poor soils [29]. Such an application 

boosts germination biomass, microbiological 

survival, and metal immobilization [30, 31]. In 

some cases, using WTS and soil mixes for 

geotechnical operations was deemed sufficient. 

WTS, the organic portion of municipal solid waste, 

and soil mixes, according to Caniani et al. (2013) 

[32], were suitable for landfill covers. Boscov et al. 

(2021) [33] elucidated that adding Brazilian WTS 

to the soil for landfill cover proved geotechnically 

viable. According to Nazir et al. (2020) [34], WTS 

might be utilized again if 10% of the material 

typically used in the sub-base course was 

substituted. After analyzing ferric WTS and sand 

soil combinations, Montalvan (2016) [35] 

elucidated that a 5:1 (soil: WTS) ratio may be 

effective in dams. Coelho et al. (2015) [36] 

discovered that if 10% cement is added to the 

mixes, WTS may be utilized to substitute natural 

soil as a substrate for road pavements. Using 

natural soil as a partial replacement in road 

construction is crucial for long-term advantages in 

this productive chain [37]. Frequently, these works 

employ a great number of virgin materials since 

aggregates and dirt from quarry sites form an 

important portion of the pavement frame [38].  

Meeting the ever-increasing request for economic 

and physical resources is one of the most 

challenging aspects of highway pavement 

development [39]. Sustainable construction and 

clean production options for the road-building 

industry include the utilization of secondary 

(reused) materials rather than primary (pristine) 

materials to reduce the extraction requirement and 

pressure on landfills [40]. However, positive results 

were obtained when WTS partially substituted 

natural soil in road building. The following 

deficiencies in these studies preclude their used in 

Brazil: Most WTP in the country has not been 

representatively and comparatively analyzed 

because only one WTS kind and soil is present and, 

generally, is estimated. Sludge generation is large, 

continuous, and increasing, resulting in low 

incorporation rates and making this material 

unsuitable for application. Any specific law does 

not permit this beneficial use, so it cannot be 

applied. This study studied the use of aluminum 

and ferric coagulants WTS to replace indigenous 

Brazilian soils in road construction geotechnical 

operations partially. In this study, different regions 

of Brazil have different soil and sludge 

compositions, which must be analyzed to develop 

rules for allowing massive volumes of this waste to 

be used for beneficial purposes. 
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3. " Water treatment sludge" (WTS) 
 

Water treatment sludge (WTS) is the residue left 

over following regular decanter and filter cleaning 

in water treatment plants (WTPs). The key 

treatment techniques utilized in a typical WTP to 

transform raw water into potable water include 

coagulation, flocculation, decantation, filtration, pH 

correction, disinfection, and fluoridation. Several 

chemicals, including chlorine, coagulants, lime, and 

fluorine, are introduced to the water throughout 

these operations. WTS forms as pollutants settle in 

filters and the bottom of sedimentation basins that 

regularly cleaned with coagulants (polymeric, 

ferric,  and alum).  

WTS represents 0.2 to 5% of all treated water [41], 

and global potable water demand is expected to 

grow by 1% annually [42]. Currently and in the 

future, WTS will be a considerable waste source. 

More than 97% of WTS is chemical compounds 

from the treatment process, water, and suspended 

solids like soil particles (sand, clay, and silt). Still, it 

additionally could include viruses, bacteria, algae, 

and organic materials. The solids content is often 

increased by dewatering to 20–30%, or 250–400%, 

in a suspension with gravimetric water content.  

This practice is not permitted in countries with 

strict environmental regulations since it causes 

silting and deteriorated water quality. 

Sustainability problems arise with environmentally 

friendly alternatives, like waste disposal in sanitary 

landfills or sewage discharge into sewage 

treatment plants (STPs). STPs, which in most 

developing countries are insufficient, are 

compromised by WTS, while specialized landfills 

contradict the priority of reducing waste disposal 

on land globally. Alternatively, reuse has the 

potential to incorporate WTS into the circular 

economy and replace natural resources in a wide 

range of production processes. 

 

3.1. Sustainable disposal and reuse of " water 

treatment sludge " (WTS) 
       The ISO 24512:2007 standard specifies a 

method for assessing water supply management by 
considering the proportion of reused or recycled 
WTS that has been used . The UN Sustainable 

Development Goal (6) Water and Sanitation [43] 
also addresses WTS sustainability. Precast concrete 
elements, brick, ceramic, and cement production 
[44-45], composting [46], phosphorous removal 
from residual waters [47,48], crop production [49], 
and forestry [50], among others; heavy metal 
absorption [51,52], coagulant recovery [53,54], 
landfill lining [55,56], and geotechnical material 
[57,58].  

Some researchers [59,60] have explored 
favourable reuse/recycling options for WTS. 
Despite an important studies number, rarely does 
the literature reuse WTS . Although just a fraction 
of the overall mass, unique management strategies 
were reported by government agencies in various 
nations in the 2000s. These included forestry, 
agriculture, reclamation of land, integration in soils, 
enhancement of soil, and inclusion into building 
materials (e.g., Germany, USA, France, UK, Japan). 
The information on the appropriate websites, 
legislation, and technical reports has not been 
updated in recent years. WTS utilization may have 
been surpassed by the wastewater reuse and 
"water treatment sludge" like biosolids that have a 
wide range of applications and are significantly 
more abundant. This does not imply that WTS reuse 
doesn't occur; e.g., in Portugal, WTS is utilized as a 
water treatment additive, and the USEPA issued 
WTS reuse standards in 2011. 

On the other hand, developing countries require 
good research to increase WTS reuse under their 
specific circumstances and data on the 
performance of current real systems. Geotechnical 
research on WTS and practical applications has 
increased in recent years, although it remains 
limited. The present paper explores the potential of 
utilizing WTS at as-collected water content in 
geotechnical like sanitary and industrial landfill 
covers and bottom liners, trench backfill, building 
subbases and pavement, geosynthetic-reinforced 
earth walls, bridge abutments , soft embankments, 
and soil reinforcement. Furthermore, based on 
experimental results, it examines the long-term 
feasibility of this technology, with the objective of 
positive waste reuse and the natural geomaterials 
preservation. Two methods are being considered: 
(1) to safeguard natural resources, part of WTS will 
be substituted with soils with adequate 
geotechnical properties; and (2) a new geomaterial 
is developed by combining WTS with additives, 
with a positive reuse objective. 
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3.2. The Effectiveness of Adding WTS 
Due to the potential reduction of shear strength, 

increase in compressibility, or reduction in soil 
workability caused by WTS addition, the maximum 
WTS value was pursued in the first approach. 
Geotechnical properties of two sludges and two 
soils were examined by mixing them in various 
proportions. The second strategy inspected WTS-
additive blends that could generate minimal 
undrained strength for spreading and field 
workability. For low-soliciting stress applications, 
lime and rock powder were blended individually 
with sludge to create a workable material. We 
suggest experimental changes for dealing with 
materials with lower shear strengths than soft 
clays. The scientific basis given by (Tsugawa, J.K. et 
al. 2019) [61] for introducing rheology into 
geotechnical testing is first applied to WTS. A 
variety of materials were developed as a result with 
excellent geotechnical properties. The 
experimental outcomes of both approaches are 
then compared and contrasted regarding their 
technical viability and social, economic, and 
environmental sustainability. Developing 
sustainable water and sanitation business models 
and environmental regulations remains 
challenging in developing countries.  

This study's new methodologies and scientific 
contribution comprised of (1) In the absence of any 
prior treatment, like drying or chemical addition, 
reusing WTS as collected would be significantly less 
economic (geotechnical properties of WTS can be 
enhanced by air or oven drying, but they require 
energy, space, and time to complete); (2) It is 
essential to determine the multifunctional 
materials' geotechnical properties, as overall study 
targets a single application, promising materials 
may be discarded for geotechnical reasons distinct 
from those anticipated in the initial envision, a 
multifunctional technique may best determine 
reuse; and (3) in the context of sustainability, 
integrating geotechnical and rheological 
experiments is necessary to comprehend the 
geomaterials conduct, as well as to explore novel 
methods of manipulation and conveyance. The 
present article used the geotechnical definition of 
the water content (w) which can be termed as the 
ratio of pore water mass to dry solid mass 
represented as a percentage to estimate the water 
amount in the material. The solids content (SC) 
value, which is used in water-treatment literature, 
is defined as the percentage ratio of the dry solid 
mass to the bulk sludge mass, and it may be linked 

to the value of water content utilizing the next 
equation (1): 

 

𝑆𝐶 = 100 (1 + ( 𝑤

100 
⁄ )) %                               ( 1 ) 

 
The oven-drying procedure was used to 

determine the water content. The dry solids mass 
corresponds to the mass obtained after drying the 
test material in an oven at 1058C5 8C for 24 hours. 
Novak and Calkins (1975) [62], Raghu and Hsieh 
(1986) [63], Geuzens and Dieltjens (1991) [64], 
Wang et al. (1992) [65], and Lim et al. (2002) [66] 
reported the geotechnical features of certain alum 
and iron coagulant WTS materials. Wang and Tseng 
(1993) [67] examined alum WTS permeability.  

 

4. Natural Soils Problems 
 
Han [68] looked at differential settlements, 

bearing failure, hydro compression, water seepage, 
instability, ground heave, liquefaction, and erosion. 
Table (1) can be used to depict natural soil 
concerns in geotechnical applications: 

4.1. " Expansive soil " 
Muhammad Aamir et al (2019) [108] 

researched and found that the addition of " water 
treatment sludge " to soil raised the soil bearing 
ratio greatly from 6.53 per cent to 16.86 per cent at 
the optimal level of an 8 per cent addition of " water 
treatment sludge ", as shown in Figure 1. 
Additionally, artificial neural networks (ANNs) 
were used to examine the relationship between 
CBR and expansive soil's physical properties, which 
revealed that at 8% optimum " water treatment 
sludge ", index of plasticity, optimum moisture 
content, and maximum dry density were all 
enhanced.  

Soil is the most essential and widely available 
substance on the planet. It is created through the 
breakdown of rocks. In building areas, dirt may be 
employed as the cheapest construction material. 
Clayey soil is difficult to work with because it 
expands. As a result, building structures on clayey 
soil poses several challenges. Such soils require 
treatment to minimize the settlement and stability 
issues associated with " expansive soil " [69]. 
Minerals that can absorb water, such as smectite 
clays, can be found in " expanding soil "s. As they 
absorb water, they increase in size. As they absorb 
more water, they expand in bulk. 
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a) Before adding 8% sludge.  

 

 
 

b) After adding 8% sludge.   
 

Figure 1. Soil bearing ratio before and after adding 8% 

sludge. 

 
This volume change has the potential to damage 

a building or other frame. Cracks in foundations, 
floors, and basement walls are widespread due to 
swollen soils. The higher levels may be damaged 
when there is a lot of movement in the building. 
When "expansive soil" dries up, it shrinks. This 
shrinkage can result in removing support from 
buildings or other configurations, culminating in 
catastrophic dropping. Soil cracks may also occur. 
These fissures may allow water to penetrate deeply 
when rainy conditions or runoff dominate.  

This constant cycle of shrinking and expanding 
destroys tissues, and the damage intensifies over 
time. As a result, it is critical to stabilising the 
expanding soil with suitable inputs [70]. Some soils 

exhibit delayed volume changes without regard to 
loads and are produced by tumefaction or 
shrinking when water content varies [71]. In low-
rise buildings with insufficient weight to support 
them, these volume changes can cause ground 
movement, causing them to collapse [72,73].  

Shrinkage settlement of clay embankments 
during road construction can cause cracking and 
disintegrating highways supported by such soils. In 
areas with alternating wet and dry seasons, 
surfaces covered with expansive clay have visible 
construction damage [74]. Montmorillonite, a clay 
mineral that expands, is the reason of " expansive 
soils ". The primary content of moisture, void ratio, 
vertical tension, and the amount and kind of clay 
minerals all influence the volume change potential 
of soil [75]. Deformation resistance is excellent in 
cemented or undisturbed " expansive soil ". As a 
result, remoulded "expansive soil" expands greater 
than undisturbed soils.    
 

4.2. Dispersive Soils 
Clay particles deflocculate when repulsive 

interactions overcome attractive interactions, 
causing the particles to reject one another and form 
colloidal suspensions in the presence of reasonably 
clean water [76]. Below a certain velocity, running 
water causes no erosion in non-dispersive soil. 
Individual particles stick together and can only be 
eliminated using very corrosive water. 
Alternatively, no speed limit in soil is dispersive; 
even in still water, colloidal clay particles remain 
hanging, causing them further susceptible to 
drainage and erosion.  

Clay fractions in dispersive and non-dispersive 
soils are not substantially different despite the high 
clay concentration in soils that dispersive, except 
for soils that possess particles of clay with less than 
10%, which are likely devoid of adequate colloids 
to maintain pipe integrity. Dispersive soils can have 
up to 12% more dissolved salts in their pore water 
than ordinary soils. Soils with high amounts of salt 
cause particles of clay to agglomerate and cover silt 
and sand particles, causing the soil to flocculate 
[77]. Eroding dispersive soil has a mechanism that 
requires both the soil structure and the sort of 
interaction between the pore and eroding fluids.  

The sort of the pH level, clay minerals exist, the 
organic matter, the temperature, the thixotropy, 
the water content, and the concentration and kind 
of ions in the pore and eroding fluids all affect the 
stress necessary to commence erosion. Swelling is 
caused by soil structure and osmotic pressures at 
the clay particles surface. This swelling reduces 
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interparticle bonding forces and contributes to 
water erosion in cohesive soils. At the clay particle 
water contact, swelling is caused by concentration 
gradients as the soil system disperses. An eroding 
fluid's flocculated and deflocculated phases border are 
affected by its sodium adsorption ratio, concentration 
of salt, mineralogy, and pH value [78]. Filho observed, 
J.T. [110] that there was no considerable 
discrepancy between the control and those with 
the addition of "water treatment sludge" (WTS) for 
the water-dispersible clay mean values in the two 
soil samples investigated, and that pH was the 
factor was strongly linked to water-dispersible clay 
in both soils. 

Experimental results, aiming at the beneficial 
reuse of waste and the preservation of natural 
geomaterials. According to a study by Boscov, M.E., 
et al. (2021) [110], the mineralogical tests show 
that Cubatão-WTS comprises quartz, goethite, 
muscovite, and kaolinite, mineralogically 
compatible with the gneissic rocks and residual 
soils through which the Cubatão River flows. 

 

4.3. " Collapsible Soils " 
Mosallaei, A., et al. (2022) [109] investigated 

that raising the proportion of "water treatment 
sludge" as an addition will boost soil cohesiveness 
and lower the internal friction angle ɸ. Due to 
volume loss being primarily triggered by moisture 
content increment, "Collapsible Soils" are moisture 
sensitive [71]. Specifically, wind-blown silts and 
loess can become unstable and collapse. Other 
materials may crumble, besides wind-deposited 
materials [79]. Large void ratios, porous textures, 
and low densities are common characteristics of 
"Collapsible Soils". Liquid limits usually have 
sufficient room to maintain saturation moisture 
levels during their normal state. These soils have 
good apparent strength at their typical low 
moisture content, but when wet, they are 
vulnerable to significant void ratio drops [80].  

This means the metastable texture tumbles in 
wet soil because the links between the grains 
weaken. Soil particles must be rearranged into a 
denser packing state for collapse. On saturation, 
collapse often happens soon [81]. Sample testing is 
the most accurate method of determining 
collapsible soil [82]. However, an understanding of 
geology and geomorphology can aid in the 
prediction of collapsible soil deposits. The ability of 
soil to collapse may be assessed using liquid limit 
and dry density. The correlation between 

collapsibility, limit of liquid, and soil dry density is 
shown in Figure 2 [83]. 

 

 
Figure 2. Collapse potential attention to liquid limit and 

dry density. 

 

Geotechnical and geological engineers are aware of 
the possibility of some alluvial and wind-blown 
deposits in dry areas collapsing [84,85]. The WTS 
addition approach utilized in this research must be 
explained since most of the soils in case studies are 
collapsible. Using the collapsible test technique, an 
odometer was utilized in earlier investigations to 
assess an undisturbed material at its natural 
moisture content. The dial gauge is set to zero, and 
a 5 kPa is applied to the sample. A progressive rise 
in vertical stress is applied until the strain rate is 
less than 0.1% per hour. The stress is then raised 
until it surpasses the anticipated structural 
pressure or at least equals it. After flooding the 
sample, the resulting collapse strain is assessed 
[73]. Equation (2) [73] is used to determine the 
Collapsible index: 
 
Ic= (𝐻1 − 𝐻2) 𝐻1 ∗ 100⁄                                             (2) 
 
I c: index of collapsibility 
H1: The initial thickness of the soil sample (prior 
saturation). 
H2: The final thickness of the soil sample (next 
saturation). Flooded compression curves are then 
generated based on the collapsed sample. A simple 
calculation of soil layer collapse is to multiply the 
layer thickness by the amount of collapse strain. 
Table 1 shows possible collapse severity [75]. 

In addition, the subgrade within cold periods, 
shifting water tables, and heavy traffic could 
encourage fine particle immigration from the 
subgrade to the sub base layers; Kermani et al. [88] 
researched this phenomenon and considered it to 
be a major contributor to pavement faulting and 
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collapse. Road uplift (expansive soil) and floor slab 
uplift were explored by Tiwari et al. [89] as a cause 
of cracking floors and roadways. The "expansive 
soils" were to blame for this because they included 

minerals that make water absorb and expand in 
volume. 

 
 
 

 
Table 1. The problematic soils as shown by Han (2015) [68] modified. 

 

Refrence Type of 
Soils 

Problems Results 

Boscov, M.E., et al. 
(2021) [110], 

Dispersive 
Soils 

Accumulation Of High 
Levels of Sodium Ions 
(Na+) In the Soil. 

the experimental investigation showed that soil: WTS 
mixtures are sound multipurpose geomaterials from a 
geomechanically point of view, considering 
permeability, shear strength, and deformability 
properties. 

Al-Taie et al. (2019) 
[86]. 

Collapsible 
soils. 

These problems are 
summarized, to include 
high erodibility, 
liquefaction potential, 
high settlement, ground 
heave or collapse, low 
bearing capacity, 
migration fine particles 
due to movement water 
table, etc. 

Low contents up to 2% of waste materials are used as 
powder and ash in soil stabilization. Finally, in general, 
it was proved that the properties and behavior of 
modified soils change clearly with the application of 
different waste materials (from domestic and mining). 

M. Chittaranjan, et. al. 
(2021) [87]. 

Expansive 
Soils. 

Large volume changes 
(e.g., soil shrinkage, 
desiccation cracks and 
curling). 

water treatment plant sludge or alum sludge can be a 
binding material due to its pozzolanic properties. Hence 
A study was made on the effects of variation of 
geotechnical properties of expansive soil treated with 
2%, 4%, 6%,9% ,10% of water treatment plant sludge. 

  

5. Heavy Metals  

 
In "water treatment sludge," heavy metals from 

densely populated and industrialized regions, 
surface runoff, and domestic, commercial, and 
industrial sources are all present. As a result, they 
can accumulate on land when repeatedly applied 
with high concentrations of potentially toxic trace 
metals [103] and these substances pose a risk of 
entering the food chain [104] or causing 
phytotoxicity, which, if not handled safely, can be 
hazardous to human and environmental health 
[103, 105]. The following heavy metals are of 
concern to human health and the environment: 
nickel (Ni), cadmium (Cd), zinc (Zn), chromium 
(Cr), mercury (Hg), the trace metal cations lead 
(Pb), and copper (Cu) [106,105-95].  

Metals with anionic traces such as arsenic (As), 
molybdenum (Mo), chromium (Cr), and selenium 
(Se) have gotten little attention while being 
identified as a priority "water treatment sludge" 
contaminant. Despite this, there are also notable 

differences between the two groups' soil chemical 
reactions, including alterations in the solubility of 
elements and soil adsorption with pH [107]. 
Information on the nature of the heavy metals 
(form, solubility, charge), as well as variables like 
organic matter content, pH, soil texture, structure 
of soil, and cation exchange capacity (CEC), is 
crucial to determining the fate and transport of 
heavy metals in sludge-amended soils, as well as 
their mobility, bioavailability, and ecotoxicity [105, 
107, 96].  

Most research investigations show varying and 
challenging-to-compare heavy metal 
concentrations in "water treatment sludge" (Table 
2). However, the observed variations can also be 
attributed to the analytical goal of wastewater 
treatment plant design, which is to prevent oxygen 
depletion and eutrophication in surface waters. 
The heavy metal concentration in "water treatment 
sludge" directly relates to its source (industrial and 
domestic wastewater) and the sludge pre- and 
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post-treatment processes used. This suggests that 
their primary goal is to clean the water component 
rather than effectively treat sludge. Urbanization 
and industrialization increase the wastewater 
produced in emerging markets and developed 
countries. Surface water contamination rises if the 
water is not properly cleansed, and more "water 

treatment sludge" is produced if it is not. Moreover, 
organic waste and chemical residues that could be 
phytotoxic or harmful to humans or animals, sewer 
sludge will also comprise microbiological 
pollutants (viruses, pathogenic bacteria, and 
protozoa besides other parasitic helminths). 

 
 

Table 2. Numerous sludges' heavy metal content (mg kg—1 DM). 
 

 
The safe management of "water treatment 

sludge" in an economically feasible and ecologically 
acceptable manner provides a significant challenge 
to wastewater authorities because of the tightening 
regulations on sludge disposal. "Water treatment 
sludge" contains considerable amounts of useful 
substances, including organic matter, nitrogen, and 
phosphorus that must be reutilized in addition to 
certain potentially detrimental components. 
However, the negative effects of potential 
contaminants in sludge concern several interested 
parties. Several treatment options and disposal 
routes are investigated according to their 
sustainability and efficiency to achieve this 
objective. The research emphasizes that sludge 
management must be focused on optimizing future 

sustainability and useful reuse, and treatment 
technology must be affordable and effective. 

6. Summary and Conclusion 

 

Sludge combines particles and water pumped from 

lagoons used for wastewater treatment. It has the 

properties of a liquid or slurry and generally 

contains 2 to 15% oven-dried solids. Biosolids are 

dried sludge that resembles oven-dried solids and 

usually comprises between 50 and 70 per cent of 

the weight of bulk solids. The reprocessing and 

reclaiming of biosolids have significantly gained 

pace toward a more sustainable society due to the 

rise in the volume of wastewater biosolids 

Country Cd Cr Cu Hg Ni Pb Zn Referen
ces 

Canada 2.3–10 66–2,021 180–2,300  37–179 26–465 354–640 [90,91] 

China 5.9–13 46–78 131–395 17–24 49.3–95.5 58–109 783.4–3,096 [92] 

Egypt 0.9–312 89–993 83–2,640 0.1–16 5–645 50–1,724 112–6,298 [93] 

German
y 

0.8–16.6 16–66 168–228 0.65–2.5 24–39 34–49 674–827 [94] 

India 41–54 102–8,110 280–543  192–293 91–129 870–1,510 [95,96] 

Spain 1.0–3.0 122–244 275–331 1.5–1.7 32–64 71–105 500–880 [97] 

Spain 1.0–2.0 163–318 200–575 1.0–2.0 55–152 70–167 540–2,100 [98] 

Thailan
d 

4.8 264 3,043  298 175.2 1,908 [99] 

Turkey 1.3 321 388  128 29.2 541 [100] 

UK 3.5 159.5 562  58.5 221.5 778 [101] 

USA 
 
Iraq 

25 
 
- 

178 
 
- 

616 
 
2500 

 71 
 
- 

170 
 
520 

1,285 
 
740 

[102] 
 
  [1] 
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generated annually worldwide and the growing 

need for virgin material. With a further yearly 

production of 66,700 tons, Iraq presently has more 

than 2 million tons of biosolids in depots or 

lagoons. This study demonstrates that in terms of 

geomechanical characteristics like permeability, 

shear strength, and deformability, soil: WTS blends 

are not appropriate as multifunctional 

geomaterials. According to preliminary 

environmental tests, they are also ecologically 

viable, although further research is needed to draw 

firm conclusions. Tests for leaching, simulating 

actual conditions for every usage, and tackling 

other pollutants, including bacteria, drugs, and 

hormones are all part of future study plans. Rock 

powder: WTS and lime: WTS combinations might 

be used in low-soliciting stress circumstances. 

However, low sludge concentrations were required 

to achieve the minimum shear strength for 

earthworks, indicating that the search for additives 

that can create acceptable all-purpose geomaterials 

must go on. 

Moreover, the paper emphasizes the importance of 

defining WTS features in rheological and geological 

terms, and assessing whether they can be used 

sustainably in developing countries at most stages, 

from mingling and transport to environmental 

licensing. In general, WTS can be considered an 

effective material for improving the geotechnical 

properties of soils, such as the shear strength, 

especially when used with other additives such as 

lime. It was also noted from the results of previous 

studies that the expansive soils are more affected 

by the addition of WTS than the rest of the soils. 
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