

Anbar Journal of Engineering Science©

journal homepage: https://ajes.uoanbar.edu.iq/

Identifying key factors affecting of the projects objectives in Baghdad Province by using experts interview technique

Halah waleed abd Al-jaleel

Department of Information Technology, Biulding Directorate, Baghdad, Iraq

PAPER INFO

 Paper history:

 Received
 07/3/2022

 Revised
 18/4/2022

 Accepted
 28/4/2022

Keywords:

Construction projects, objectives, key factors, experts' interview

©2022 College of Engineering, University of Anbar. This is an open access article under the cc BY-NC 4.0 License https://creativecommons.org/licenses/by-nc/4.0/

1. INTRODUCTION

All over the world, completing each tendered project within a predefined time, cost and quality constraints is a primary aim for both the clients and their project managers. Although all the above three factors play significant roles in the success of a construction project, their importance is ranked according to the specific requirements of each client and project [1]. Private clients may often rank time as the mostimportant of the three criteria; public clients placed historically more importance on quality and secondly on cost. But since nowadays, European Union (EU) and national infrastructure programmes set strict dates for projects completion, at the client's risk of losing funding if deadlines are not met, the time factor has become extremely important for the public sector, too [2]. There are various reasons that lead to failure of the project, Construction delay is one of them [3].

ABSTRACT

The performance of the construction industry is regarded as one of the most significant variables in the global economic development success of nations. As a result, it requires focusing on strengths to enhance them and weaknesses to address them. This study aims to identify the key factors affecting the objectives of construction projects. To achieve the study aim, previous records and documents of two completed projects were studied carefully to identify problems that occurred and the impact of these problems on the project objectives. After that, an experts' interview was conducted to identify the key factors affecting the purposes of the construction project. The results of this study identified (33) key factors affecting the achievement of the construction project objectives, where the factor "The financial allocation for the project" was the most important, while the factor "Bad a health and safety plan in the project" was the least important.

> Syedsalehi in 2010 [4] defined three goals that determine the success of a project (Quality, costs and time), also called the iron triangle [5]. There is a consensus among researchers that combining these three measures is the best way to operationalize construction project success [6,7],

> A project is an organization of people dedicated to the deployment of a set of resources for a specific purpose or objective [8]. Rumane in (2011) [9] defined the project as follows: "A project is a plan or program performed by the people with assigned resources to achieve an objective within a finite duration". While the common definition of the construction project, as a unique process, consisting of a set of coordinated and controlled activities with start and finish dates, undertaken to achieve an objective conforming to specific requirements, including constraints of time, cost and resources [10]. Project management is defined as planning, directing, and controlling resources to achieve specific goals and

objectives of the project [11]. Managers need to ensure delivery of projects to cost, schedule and performance requirement. To achieve this involves identifying and managing the risks to the project at all project stages from the initial assessment of strategic options through the procurement, fabrication, construction and commissioning stage [12,13] Most, if not all, projects go through a life cycle that varies with the size and complexity of the project. Generally, consist of five phases depending on [14-16], as follows:

- A. Brief Phase: In this phase, an organization (client, consultant, contractor, construction manager) initiates the project and evaluates potential alternatives.
- B. Design Phase: Once a decision is made, lines of communication and procedure for work authorization and performance reporting are established in this phase.
- C. Procurement Phase: This phase is also called the contracting phase; it represents the official transition of project from design into construction.
- D. Construction Phase: it is also called the implementation phase; this phase of the project is defined as the actual physical construction phase.
- E. Commissioning Phase: It is also called the Maintenance and Occupation Phase. In this phase, the evaluation of the performance of the construction structure is made and recommendation for the nature of maintenance and repair has been considered.

2. Research Methodology

To achieve the aim of this study, the previous records and documents of two completed projects in Baghdad province were studied carefully for identifying problems that occurred during the construction period, in addition, to identify the impact of these problems on the project objectives, then an interview was conducted with 16 experts who have great experience in planning and implementing construction projects to identify the key factors affecting the objectives of the construction project.

2.1. Identifying The Problems That Occurred

To identify the problems that occurred during the construction phase, the researcher selected two construction projects that completed a few years ago. The general details of these projects are illustrated in Table 1. After studying the previous records and reviewing the drawings and different execution plans and interviewing some of the engineers who worked in these two projects. The researcher lists the general conditions and problems that occurred in each project and categorized into Four sub-groups as shown in Table 2. The researcher depended on the described problems in deriving the factors affecting the achievement of the project objectives as explained in the next paragraph.

Table 1. Detail information about two projects under study

	First project P1				
Project Name	Construction Of Specialized				
r roject r talle	Building For Iraqi Researches				
	And Arabic Codes Project.				
Client	Ministry of Construction and				
Chent	Housing				
Contractor	Al-Fao General Engineering				
Contractor	Company.				
	Ministry of Construction and				
The beneficiary	Housing and Municipalities and				
The beneficial y	Public Works.				
Location	Baghdad				
Contractor Work	Public				
Sector	T ublic				
Cost of Contract	2 122 287 000 IOD				
Total Cost	3,122,387,000 IQD 3,560,000,000 IQD				
Duration of	545 Days				
Contract	545 Days				
Actual date of com-	17/10/2011				
mencement	17/10/2011				
Commencement	23/09/2011				
date according to	23/09/2011				
contract Completion date					
according to con-	21/03/2013				
tract	21/03/2013				
Duration Granted	510 Dava				
Completion date	510 Days				
with duration	12/08/2014				
granted	12/08/2014				
Completion Per-	100 %				
-	100 %				
centage	cond Project P2				
	Implementation of treatment				
Project Name	plants and pumping stations in				
	Latifiya				
Client	Baghdad Governorate				
Contractor	Al-marafed General Contracting				
Contractor	_				
The heref	Company Bachdad Covernariate				
The beneficiary	Baghdad Governorate				
Location	Baghdad				
Contractor Work	Private				
Sector	50 755 915 000 100				
Cost of Contract	59,755,815,000 IQD				
Duration of Con-	660 Days				
tract	06/11/2012				
Actual date of	06/11/2012				
commencement					

Commencement	06/11/2012
date according to	
contract	
Completion date	
according to con-	28/08/2014
tract	
Duration Granted	700 Days
Completion date	
with duration	28/07/2016
granted	
Completion Per-	100 %
centage	

Table 2. A list of problems occurred in eachproject under study

No.	The problems that occurred	Their Impact	Project
	Client or Designer / Const	ultant or both	1
1.	Delayed delivery of the work site to the contrac- tor, because there are rem- nants of old buildings on	- Time	P1
2.	the site Errors in the surveying engineering work at the site for reasons related to the employer.	- Time - Cost - Quality	P2
3.	Change the specifications in BOQ (e.g. the design power of pump and pump gates).	TimeCostQuality	P2
4.	Implementation of new paragraphs in the project according to client re- quest.	- Time - Cost	P2
5.	The diameter of reinforce- ment bar used in the struc- tural design is not availa- ble in local markets.	TimeCostQuality	P1
6.	There is a difference be- tween the drawings and BOQ for the lengths of the pipes and the quantities of reinforced concrete and cable lengths with large differences exceeding 20% of the contractual quantities.	- Time - Cost - Quality	Р2
7.	There is mismatch be- tween the drawing design	TimeCostQuality	P1+P2
	Contractor		
8.	Poor of financial liquidity by the contractor	TimeQuality	P1
9.	Errors in the surveying engineering work at the site for reasons related to the contractor.	TimeCostQuality	P1

No.	The problems that occurred	Their Impact	Project
10.	There are paragraphs in the Bill of Quantities has been priced incorrectly so that they cannot be exe- cuted at this price.	TimeCostQuality	P1
11.	Demolition the excava- tion sides as a result of the high level of groundwater.	TimeCostQuality	P2
12.	Executing a lot of addi- tional works by the con- tractor	- Time - Cost	P2
13.	Contractor's dissatisfac- tion on the granted dura- tions	TimeCostQuality	P2
14.	Bad scheduling in the sup- plying process of con- struction materials at the site	- Time - Cost	P2
15.	Use of bad subcontractors and unskilled labor in the implementation of project activities	TimeCostQuality	P1+P2
16.	There are highly materials waste generated	- Cost	P1
17.	Bad materials storage.	TimeCostQuality	P1+P2
18.	Rework due to use un- skilled labor in the imple- mentation of project ac- tivities.	- Time - Cost - Quality	P1
19.	Materials supplied non matching the required specification.	TimeCostQuality	P1+P2
20.	Bad planning for the re- quired resources.	- Time - Cost - Quality	P1+P2
21.	An occurrence of acci- dents for workers as a re- sult of working in hazard- ous conditions.	- Time - Cost - Quality	P1+P2
22.	External condition Frequent stopping in the	ons - Time	
	project due to religious events, public holidays, bad weather and bad secu- rity conditions.	- Cost - Quality	P1+ P2
23.	The existence of ground- water at a high level dur- ing the excavation works of the foundations	- Time - Cost	P1+ P2
24.	Change the paths of some network lines due to ille- gal buildings and obsta- cles that cannot be easily removed	- Time - Cost - Quality	P2

Figure 2. Experts Academics Degree.

2.2. Identifying of key factors affecting the objectives of the construction project

Depended on list of problems which mentioned in previous paragraph, the researcher derived some of the factors affecting on construction projects objectives. Then conducted an interview with experts who have experience in planning and implementing the construction projects, for identifying the key factors affecting the construction project objectives. The researcher made interviews with sixteen experts. The work sector of experts, academics degree of experts who participated in these techniques are illustrated in Fig 1,2 respectively.

Face to face interviews was conducted by using the applications of social media, often. The form of interview is formalized as questions with the possibility of answer by using a five-scale Likert. in addition, the possibility to add factors that considered important by experts. Once the interviews are completed, the statistical analysis process began to rank the key factors. SPSS program was used to calculate the mean and the standard deviation. The researcher also conducted the validity and reliability test, for the experts' answers by extracting the alpha coefficient - Cronbach by using (SPSS) program, the value of alpha was (0.888), this indicates the answers of experts in this technique have high stability (the value of Cronbach alpha should not be less than 0.70). The results of this technique represented as a list of key factors affecting the achievement of the objectives of construction projects, as shown in Table 3.

2-		4.5125	0.70415	very
	during construc-			high
	tion phase			
3-	Delay in the	4.3125	0.60208	Very
	approval process			high
	of the designs and			-
	materials specifi-			
	cations by the cli-			
	ent.			
4-		4 21 25	0.0000	Vame
4-	Delay the contrac-	4.3125	0.60208	Very
	tor's payments by			high
	the client			
5-	the inaccuracy of	4.3125	0.70415	Very
	the reports of soil			high
	investigations test,			-
	in terms of the			
	number of test			
	points and the			
	depth of the point.			
(4.25	0.68234	Var
6-	The Subcontractor	4.23	0.08234	Very
	is not good			high
	enough.			
7-	Execution Mis-	4.25	0.68313	Very
	takes			high
8-	Supplying of con-	4.25	0.57735	Very
	struction materials			high
	non-conform to			U
	the specifications.			
9-	Improving the tra-	4.25	0.57735	Very
	ditional design	4.25	0.57755	high
	and construction			mgn
10	process.	1.05	0.00010	N 7
10-	Design mistakes	4.25	0.68313	Very
				high
11-	Accuracy in the	4.25	0.44721	Very
	preparation of the			high
	contract docu-			
	ments.			
12-	Poor management	4.1875	0.54391	High
	and supervision			3
13-	Lack of technical	4.1875	0.75	High
133	workers experi-		5.75	111511
	1			
1.4	ence	4 1075	0.40211	11:11
14-	Select a qualified	4.1875	0.40311	High
	project manager.			
15-	Bad storage for	4.1875	0.54391	High
	construction mate-			
	rials			
16-	An inaccurate	4.1875	0.54391	High
	Planning			8
17-	Absence of quality	4.1875	0.75	High
1/-	control (Q.C)	T.1075	0.75	ingn
1			I	I

 Table 3.A list of key factors affecting the achievement of the objectives of construction projects

Mean

4.375

Design Revisions 4.3125 0.70415

Standard

Devia-

tion

0.5

The key factors

The financial allo-

cation for the pro-

No.

1-

2-

iect

Effect

Level

Very

high

Very

No.	The key factors	Mean	Standard Devia- tion	Effect Level
18-	Delays in approv- als related to the official bodies to work on the pro- ject.	4.1875	0.75	High
19-	There is no sched- ule to supply the construction mate- rials.	4.125	0.5	High
20-	Choose the design team who does not have efficiency.	4.125	0.5	High
21-	The existence of disputes in the land of the project.	4.125	0.7188	High
22-	The multitude of official holidays and public events.	4.1245	0.61914	High
23-	Lack of materials at the site or the market.	4.0625	0.68007	High
24-	The supervision system of the con- struction waste on-site	4.0625	0.85391	High
25-	The change in ma- terials, specifica- tions and type dur- ing execution of the project.	4.0625	0.85391	High
26-	lack of accuracy for topographic surveys of the pro- ject site	4.0625	0.57373	High

3. Conclusion

According to the results of this study, the researcher concluded that there are a large number of Iraqi construction projects suffered from the delay in compeletion and cost overrun together with the bad performance, all these problems due to reasons related with client, contractor, and external conditions. So, there are thirty-three key factors have the highest effect on achievement of the objectives in the Iraqi construction projects, where the factor of "the financial allocation for the project" has the highest effect with mean value of 4.375, followed by the factor of "design revisions during the construction phase" with mean value of 4.3125, then the factor of "delay in the approval process of the designs and materials specifications by the client" with mean value of 4.3125, and followed by the remained factors. These key factors enable the top management and project managers to Table 3. Continued

27-	An occurrence of economic crises in the country during the execution of the project.	4.0625	0.44253	High
28-	Bad the planning for the quantities required materials in the implementa- tion, as well as se- quence work activ- ities.	3.9375	0.57373	High
29-	Delay in the project location delivery to the contractor	3.875	0.80623	High
30-	Not conduct the necessary labora- tory tests for con- struction materials before use.	3.8125	0.75	High
31-	The employer does not have an adequate experi- ence.	3.75	0.68313	High
32-	Stop the work in the project due to causes related to the employer.	3.4375	0.62915	High
33-	Bad a health and safety plan in the project	3.4275	0.62335	High

identify the weak points that need for correction in the current projects by set up procedures to treat each factor. In addition, these key factors can be a database for the future construction projects and studies.

Acknowledgements

This paper produced in copereation with Biulding Directorate / Ministry of Housing and Construction.

References

Authors are responsible for the authenticity and completeness of all references.

Tayeh B.A., Kh. Al-Hallaq KH, and Sabha F.A. (2016). Effects of faulty design phase on school buildings maintenance in gaza strip, *Americ. J. Civ. Eng. Arch.*, 4: 199-210. [https://doi.org/10.12691/ajcea-4-6-2].

- [2] Lambropoulos S. (2013). Objective Construction Contract Award using Cost, Time and Durability Utility, *Procedia - Social and Behavioral Sciences*, 74: 123 – 133.
- [3] Mali L. and Warudkar A.A. (2016). Causes of Delay in the Construction Industry in Pune Region of India, *International Journal of Application or Innovation in Engineering & Management*, 5(5): 306-313.
- [4] Syedsalehi H. (2010). Strategic Planning Lecture, Electronic Branch, Islamic Azad University, Tehran.
- [5] El-Sheikh A. and Pryke D. (2010). Network gaps and project success, *Construction Management and Economics*, 28(12): 1205-1217.
- [6] Phua F.T.T. (2004). Modelling the determinants of multi-firm project success: a grounded exploration of differing participant perspectives, *Construction Management and Economics*, 22(5): 451- 459.
- [7] Tayeh O.A., El-Hallaq Kh., and Tayeh B.A. (2018). Importance of organizational culture for Gaza strip construction companies, *Int. J. Eng. Manage. Res.*, 8: 35-39, 2018.
- [8] El-Hallaq Kh. and Tayeh B.A. (2015). Strategic planning in construction companies in gaza strip, *J. Eng. Res. Techno.*, 2: 167-174, 2015.
- [9] Rumane A. R. (2011). Quality Management in Construction Projects, Taylor and Francis Group, LLC, Boca Raton London New York.
- [10] Lester A. (2013). Project Management, Planning and Control: Managing Engineering, Construction and Manufacturing Projects to PMI, APM and BSI Standards, Sixth Edition. Butterworth-Heinemann. ISBN-13: 978-0080983240
- [11] Fan M., Lin N., and Sheu C. (2008). Choosing a project risk-handling strategy: An analytical model, *International Journal of Project Management*, 112: 700–713.
- [12] Gudienė N., Ramelytė L., and Banaitis A. (2013). An Evaluation of Critical Success Factors for Construction Projects using Expert

Judgment, *Proceedings in Scientific Conference*. No. 1.

- [13] Musarat M. A. and Ahad M. (2016). Factors Affecting the Success of Construction Projects in Khyber Pakhtunkhwa, Pakistan, *Journal of Construction Engineering and Project Management*, 6: 1-6. 10.6106/JCEPM.2016.12.4.001.
- [14] Saleh S. H. (2004). Developing Construction Materials Planning and Control System for Fast Track Delivery Projects, A thesis submitted to the college of engineering of the university of Baghdad for award of the degree of doctor in construction project management.
- [15] Gannett Fleming G. (2009). Construction Project Management Handbook, U.S. Department of Transportation Washington.
- [16] Tayeh B., Al-Hallaq Kh., Alaloul W., and Kuhail A. (2018). Factors Affecting the Success of Construction Projects in Gaza Strip, *The Open Civil Engineering Journal*, 12: 301-315. 10.2174/1874149501812010301.