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This paper offers the linear analysis of the static behavior of two directional functionally graded 

(2D-FG) cylindrical panels under the effect of internal symmetric loads. The mechanical 

properties of the cylindrical panel are given to be changed simultaneously through the thickness 

and longitudinal directions as a function to the volume fraction of the constituents by a simple 

power-law distribution. Based on Sander’s first order shear deformation shell theory (FSDT), the 

equations of motion for (2D-FG) panels are derived using the principle of minimum total 

potential energy (MPE). The finite element method (FEM) as an effective numerical tool is 

utilized to solve the equations of motion. The model has been compared with those available in 

the literature and it observed good correspondence. The influences of the material variation 

along the thickness and longitudinal directions, geometrical parameters, boundary conditions 

and load parameters on the panel deformation are studied in detail. 
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1. Introduction    
The first presentation of functionally graded 

materials (FGMs) was used in Japan in the year 1984 
by a group of the material scientists and the attention 
of researchers has concentrated frequently in this 
type of materials [1]. FGMs are new types of 
sophisticated heterogeneous composite materials in 
which their material properties are characterized by 
a sleek and uninterrupted variation simultaneously 
along one (or more) direction(s) [2]. The mixture 
from ceramics and metals are generally used in 
manufacturing FGMs to fulfill the requirements in a 
variety engineering locations for survivorship in 
severe environments (high mechanical and thermal 
loadings) [3].      To control carefully the deformations 

and stresses, 2-D FG plates may be used in most 
engineering applications. Some researchers studied 
the deformations of 2-D FG circular and rectangular 
and square plates subjected to various loadings. 
Under the effect of thermal loading, the elastic-plastic 
deformations of 2-D FGMs were investigated by 
Nemat et al. [4]. 2-D FG circular and annular plates 
subjected to axisymmetric bending are studied by 
Nie and Zhong [5]. Asemi et al. [6] calculated the 
deformations of fully clamped 2-D FG square plates 
using 3-D elasticity theory and FEM. Alinaghizadeh 
and Shariati [7] used generalized differential 
quadrature method (GDQM) to study linear and 
nonlinear deflection of thick 2-D FG annular sector 
and rectangular plates using FSDT and HSDT9. 
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Cylindrical shells and panels in structural 
components play a major role in engineering 
applications. The idea of FGMs avoids sudden 
changes in the stress and displacement distributions 
during thickness of the shell and panel structures. 
Several researchers have been presented to study the 
static behavior of FG cylindrical shells and panels as 
[8-20]. The extension and flexure of cylindrical and 
spherical thin elastic shells are presented by general 
survey from Basset [8]. Horgan and Chan [9] 
calculated the deformations of a FG cylinder using 
power-law function between elastic modulus and 
radius with constant Poisson’s ratio. Under the effect 
of combined axial and radial mechanical loads, post 
buckling demeanor of FG cylindrical shells in high-
temperature state is studied by Shen and Noda [10]. 
Zhao et al. [11] determined static deflection of FG 
cylindrical shells under the effect of symmetric loads. 
The influences of power-law distribution of 
continuously graded fiber rein-forced cylindrical 
shells using 3-D analysis of thermal stresses are 
discussed by Aragh and Yas [12,13]. The static 
deformations of FG cylindrical shell bonded to thin 
piezoelectric layers were calculated by Alibeigloo 
[14] using thermo-elastic solutions. By using DQM, 
the static analysis of FG cylindrical shells with 
piezoelectric layers are presented by Alibeigloo and 
Nouri [15]. Liew et al. [16] presented analysis of the 
thermal stress behavior of FG hollow circular 
cylinders. Viola et al. [17,18] used generalized 
unconstrained third order theory to study static 
analysis of FG cylindrical, conical shells and panels. 
Under the effect of compression loading, the 
deformations of moderately thick FG conical panels 
are estimated by Aghdam et al. [19]. FG conical shells 
with stress and displacement recovery were 
investigated by Rosseti et al. [20]. In complex design 
problems, 1-D FG cylindrical shell and panel may also 
not be so effective because all their outer surfaces 
will have the same synthesis and heat allocation. 
Therefore, shell and panel elements in advanced 
machine are preferred to change in properties in two 
or three directions to give more efficiency to the 
structures and reduce the deformations and stresses. 
Nemat-Alla [21] submitted the conception of 
appending a third material to (FGMs) to resist the 
dangerous thermal stresses. Aragh and Hedayati [22] 
calculated the effect of natural frequency parameters 
on 2-D FG cylindrical shells using (GDQM). The 
natural frequency effect on cylindrical shells are 
made from 2-D FG ceramic/metal is determined by 
Ebrahimi and Najafizadeh [23] using GDQM. The 
influence of 2-D material distribution on the dynamic 
demeanor of thick finite length cylinder structure 
and the thermal stress distributions were presented 
by Asgari and Akhlaghi [24]. Najibi and Talebitooti 

[25] studied nonlinear transient thermo-elastic 
analysis a two-dimensional FG thick hollow finite 
length cylinder under effect of thermal loading using 
(FEM). Literature survey showed that most treatises 
on cylindrical shells and panels are restricted to 
conventional FG cylindrical shells and panels, so this 
work may be exercised as a beneficial research for 
recipient studies. In the present work, linear analysis 
of 2-D FG cylindrical panels is studied using (FEM) 
method jointly with (FSDT). The material 
distribution is given to be changed simultaneously 
through thickness and longitudinal directions as a 
simple power-law distribution. To confirm the 
accuracy and validity of results, a comparison study 
is performed. 

  
2. Geometry of model and material 

distribution 
Assuming a 2-D FG cylindrical panel of length a, 

radius R, span angle θ0, span length b = R θ0, and 
uniform thickness h, where the origin of a coordinate 
system (x, y, z) is a group at the mid-plane of the 
panel as shown in Fig. 1. This panel is made from four 
different constituent materials whose properties P 
are changed simultaneously in two directions (z, x) 
during thickness and longitudinal directions as a 
function of the volume fraction and material 
properties [7].  

  1 1 2 2 1 1 2 2,     c c c c m m m mPR z x PR V PR V PR V PR V     (1)         

Where PR refer to the effective material 
properties, such as Young’s modulus E and other 
physical properties except for the Poisson’s ratio is 
considered 0.3 in the present work. 

The subscripts c1 and c2 denote to first and second 

ceramic while m1 and m2 first and second metal 

constituents and Vij (i = c, m and j = 1, 2) represents 

volume fraction of the material constituents ij which 

can be described by a power-law distribution as [7]:                                                                                                         

Vc1 = [1 − (
𝑥

𝑎
)
𝑛𝑥

] (
𝑧

ℎ
+

1

2
)
𝑛𝑧

                                           (2a)                                                                                                               

Vc2 = (
𝑥

𝑎
)
𝑛𝑥

  (
𝑧

ℎ
+

1

2
)
𝑛𝑧

                                                     (2b) 

Vm1 = [1 − (
𝑥

𝑎
)
𝑛𝑥

]  [1 − (
𝑧

ℎ
+

1

2
)
𝑛𝑧

]                              (2c)    

Vm2 = (
𝑥

𝑎
)
𝑛𝑥

 [1 − (
𝑧

ℎ
+

1

2
)
𝑛𝑧

]                                          (2d) 

Where nx and nz represent power law indices 
through thickness and longitudinal directions; 
respectively. By substituting Eq. (2) into Eq. (1) 
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Young’s modulus property E(z, x) can be explained 
as:                                                                                    

𝐸(𝑧, 𝑥) = [𝐸𝑚1 + (𝐸𝑚2 − 𝐸𝑚1) (
𝑥

𝑎
)
𝑛𝑥

] [1 − (
𝑧

ℎ
+

1

2
)
𝑛𝑧

] + [𝐸𝑐1 + (𝐸𝑐2 − 𝐸𝑐1) (
𝑥

𝑎
)
𝑛𝑥

] (
𝑧

ℎ
+

1

2
)
𝑛𝑧

               (3)                                                                                                                                                                                                                                                                                                                                                      

     It can be seen from Eq. (3) that the lower and 
upper edges at (x, y, z) = (0, y, h/2),(0, y, -h/2),(a, y, 
h/2),(a, y, -h/2) represent first ceramic, first metal, 
second ceramic, second metal; respectively, as it is 
observed in Fig. 1. The magnitudes of power- law 
indices are (∞ ≥ (nx, nz) ≥ 0). 

 

Figure 1. The model geometry of a two-directional FG cylindrical panel. 

3. Theoretical formulation 

3.1. Displacement field and strains 

In this paper, the equations of motion for 2-D FG 
panel are derived by using minimum potential 
energy (MPE). The in-plane displacements u, v and 
the transverse displacement w for the panel are 
given by using Sander’s first order shear deformation 
theory (FSDT) [26]: 

u(x, y, z) = 𝒖𝟎(x, y)+ z 𝝋𝒙 (x, y)                                    (4a) 

v(x, y, z) = 𝒗𝟎(x, y)+ z 𝝋𝒚 (x, y)                                    (4b) 

w(x, y, z) = 𝒘𝟎(x, y)                                                          (4c) 

     where u, v and w represent the displacements of a 

point along the (x, y, z) coordinates. u0, v0 and w0 are 

the displacements of a point on the mid-plane. 𝝋𝒙 

and 𝝋𝒚 are the rotations of normal to the mid-plane 

about the y-axis and x-axis, respectively.  

     The linear strain components are calculated by 

substitution Eqs. (4) into linear strain-displacement 

relations as follows [29]: 

𝜺𝒙𝒙 =
𝝏𝒖𝟎

𝝏𝒙
+ 𝒛

𝝏𝝋𝒙

𝝏𝒙
                                                             (5a) 

𝜺𝒚𝒚 =
𝝏𝒗𝟎

𝝏𝒚
+ 𝒛

𝝏𝝋𝒚

𝝏𝒚
+

𝒘𝟎

𝑹
                                                   (5b) 

𝜸𝒙𝒚 =
𝝏𝒖𝟎

𝝏𝒚
+

𝝏𝒗𝟎

𝝏𝒙
+ 𝒛

𝝏𝝋𝒙

𝝏𝒚
+ 𝒛

𝝏𝝋𝒚

𝝏𝒙
                                   (5c) 

𝜸𝒚𝒛 = 𝝋𝒚 +
𝝏𝒘𝟎

𝝏𝒚
−

𝒗𝟎

𝑹
                                                        (5d) 

𝜸𝒙𝒛 = 𝝋𝒙 +
𝝏𝒘𝟎

𝝏𝒙
                                                                 (5e) 

3.2. Constitutive relations 

       By assuming the plane-stress state, the 

linear stress-strains relation will be obtained as 

follows [29]: 

𝜎𝑥𝑥=[
𝐸(𝑧,𝑥)

(1−𝜈2)
](𝜀𝑥𝑥+𝜈𝜀𝑦𝑦)                                        (6a) 

𝜎𝑦𝑦 = [
𝐸(𝑧,𝑥)

(1−𝜈2)
] (𝜀yy+ 𝜈 𝜀xx)                                               (6b) 
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𝝈𝒙𝒚 = [
𝑬(𝒛,𝒙)

𝟐(𝟏+𝝂)
] (𝜸𝒙𝒚)                                                          (6c) 

𝝈𝒚𝒛 = ks [
𝑬(𝒛,𝒙)

𝟐(𝟏+𝝂)
] (𝜸𝒚𝒛)                                                      (6d) 

𝝈𝒙𝒛 = ks [
𝑬(𝒛,𝒙)

𝟐(𝟏+𝝂)
] (𝜸𝒙𝒛)                                                       (6e) 

Where ks is the shear correction factor taken to be 
5/6.  

3.3. Strain energy 

    The strain energy of the 2-D FG cylindrical panel is 
expressed as [28]:  

U = (
𝟏

𝟐
) Vol∫{Ԑ𝒊𝒋}T  {𝝈ij} dv                                                (7) 

Where Ԑ𝒊𝒋 and 𝝈ij (i, j=x, y, z) are the strain and stress 
tensor components. 

3.4. Work done due to transverse load 

The panel under the effect of symmetric load P0, 
work done on the panel may be expressed as [28]: 

W = (
𝟏

𝟐
) A∫𝑷𝟎(x, y) {w0} dA                                             (8) 

4. Solution methodology 

4.1. Finite element modeling 

As aforementioned in this study, the (FEM) is 
utilized to solve the equations of motion in the 
locative field. In the state of symmetric loading, one 
has two-dimensional problems and so those 
appropriate two-dimensional elements should be 
chosen to describe the 2-D FG cylindrical panels. In 
the present work, a four-node isoparametric 
rectangular element and five degrees of freedom per 
node are utilized for finite element styling. The range 
in the finite element is described into a group of finite 
rectangular elements, any of the elements has the 
displacement vector and element geometry of the 
style is explained by [27]: 

{𝑑} = ∑ 𝑁𝑖 {𝑑}𝑖
𝑁𝑃𝐸

𝑖=1
,  𝑥 = ∑ 𝑁𝑖 𝑥𝑖𝑁𝑃𝐸

𝑖=1 ,  

𝑦 = ∑ 𝑁𝑖 𝑦𝑖𝑁𝑃𝐸
𝑖=1         (9) 

     Where 𝑁𝑖 denotes the interpolation function 

(shape function) for the ith node, {𝑑}i represents the 

vector of unknown displacements for the ith node, 

NPE is the number of nodes per element and 𝑥i and 

𝑦i are Cartesian coordinate of the ith node. The 

interpolation functions which are employed to the 

finite element estimation are expressed by [27]: 

N1=0.25(1-ξ)(1-ƞ)                                                  (10a)     

N2=0.25(1+ξ)(1-ƞ)                                                  (10b)                                                              

N3=0.25(1+ξ)(1+ƞ)                                                 (10c)                                                              

N4=0.25(1-ξ)(1+ƞ)                                                 (10d)                                                               

4.2. Governing equation 

     The governing equation for static analysis of 2-D 
FG panel can be derived utilizing the principle of 
minimum total potential energy (MPE). The 
equations of motion of the typical element “e” 
according to principle of (MPE) can be expressed as 
[28]: 

( ) ( ) 0e eU W                                                        (11) 

     Where δU(e) and δW(e) are the variations of the 

potential energy of the eth element and virtual work 

done of the external symmetric load on the eth 

element. Next to, a coordinating (e) is employed to 

indicate the physical and geometrical parameters of 

the eth element. 

     Based on the FSDT and from Eq. (7), the variation 
of the potential energy of the eth element can be 
expressed as [28]: 

𝜹𝑼(𝒆)=∫ ∫ [𝝈𝒙𝒙
(𝒆)𝜹𝜺𝒙𝒙

(𝒆) + 𝝈𝒚𝒚
(𝒆)𝜹𝜺𝒚𝒚

(𝒆) + 𝝈𝒙𝒚
(𝒆)𝜹𝜸

𝒙𝒚

(𝒆) +

𝒉

𝟐
−𝒉

𝟐
𝑨(𝒆)

𝝈𝒚𝒛
(𝒆)𝜹𝜸

𝒚𝒛

(𝒆) + 𝝈𝒙𝒛
(𝒆)𝜹𝜸

𝒙𝒛
(𝒆)] 𝒅𝒛𝒅𝑨                                          (12) 

From Eq. (8), the virtual work done due to uniform 
load on the eth element can be expressed as [28]: 

𝜹𝑾(𝒆) = ∫  𝑷𝟎
(𝒆)

𝑨(𝒆)
{𝜹𝒘𝟎

(𝒆)
}𝒅𝑨                                         (13) 

Where A(e) is the eth element area. 

     The governing equations of motion for linear static 
analysis with small deformation of the eth 2-D FG 
panel element can be obtained by substituting Eqs. 
(12) and (13) into Eq. (11) as follows [27]: 

[K(e)] {d(e)} = {F(e)}                                                          (14) 

     Where [K(e)], {d(e)} and {F(e)} are the linear 

stiffness matrix, vector of degrees of freedom and 

force vector of the eth element; respectively [27]. 

[K(e) ] =   

[
 
 
 
 
 
 𝑲𝟏𝟏

(𝒆) 𝑲𝟏𝟐
(𝒆) 𝑲𝟏𝟑

(𝒆) 𝑲𝟏𝟒
(𝒆) 𝑲𝟏𝟓

(𝒆)

𝑲𝟐𝟏
(𝒆) 𝑲𝟐𝟐

(𝒆) 𝑲𝟐𝟑
(𝒆) 𝑲𝟐𝟒

(𝒆) 𝑲𝟐𝟓
(𝒆)

𝑲𝟑𝟏
(𝒆) 𝑲𝟑𝟐

(𝒆) 𝑲𝟑𝟑
(𝒆) 𝑲𝟑𝟒

(𝒆) 𝑲𝟑𝟓
(𝒆)

𝑲𝟒𝟏
(𝒆) 𝑲𝟒𝟐

(𝒆) 𝑲𝟒𝟑
(𝒆) 𝑲𝟒𝟒

(𝒆) 𝑲𝟒𝟓
(𝒆)

𝑲𝟓𝟏
(𝒆) 𝑲𝟓𝟐

(𝒆) 𝑲𝟓𝟑
(𝒆) 𝑲𝟓𝟒

(𝒆) 𝑲𝟓𝟓
(𝒆)
]
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{F(e)} = 

{
  
 

  
 𝑭𝟏

(𝒆)

𝑭𝟐
(𝒆)

𝑭𝟑
(𝒆)

𝑭𝟒
(𝒆)

𝑭𝟓
(𝒆)
}
  
 

  
 

    {d(e)} = 

{
  
 

  
 𝒖𝟎

(𝒆)

𝒗𝟎
(𝒆)

𝒘𝟎
(𝒆)

𝝋𝒙
(𝒆)

𝝋𝒚
(𝒆)
}
  
 

  
 

                            (15) 

     After assembling the element stiffness matrix 

[K(e)] and element load vector {F(e)} will be obtained 

on the global stiffness matrix [K] and global load 

vector {F} as [27]:  

[K]{d} = {F}                                                                       (16) 

5. Numerical results 

     The linear analysis of 2-D FG panel are calculated 

using the principle of (MPE) in conjunction with 

(FEM). A computer program has been advanced in 

FORTRAN Plato IDE (FTN95) environment. In this 

study, various boundary conditions are employed to 

improve the effectiveness of present method. Table. 

1 shows the properties of 2-D FG panel constituents 

given at room temperature (27oc), which have been 

employed to calculate the results of the present 

work. 

Table 1. The Young’s modulus property for metals and ceramics 

constituents of 2-D FG panel 

     Materials Young's modulus  

Tie6Ale4V Em1=105.7GPa 

Aluminum (Al) Em2=70GPa 

Alumina (Al2O3) Ec1=380GPa 

Zirconia (ZrO2) Ec2=151GPa 

It is assumed that the deformation of the panel is 

within the elastic limits. The boundary conditions 

used in the present study are as follows: 

Clamped (CCCC): u0 = v0 = w0 = 𝜑𝑥  = 𝜑𝑦 = 0, at x = 0, a 

and y = b/2, -b/2. 

Simply supported (SSSS): v0 = w0 = 𝜑𝑦 = 0, at x = 0, a 

and u0 = w0 = 𝜑𝑥  = 0, at y = b/2, –b/2. 

Clamped-Simply supported (CSCS): u0 = v0 = w0 = 𝜑𝑥  

= 𝜑𝑦 = 0, at y = b/2, -b/2 and v0 = w0 = 𝜑𝑦 = 0, at x = 

0, a. 

Simply supported-clamped (SCSC): u0 = v0 = w0 = 𝜑𝑥  

= 𝜑𝑦 = 0, at x = 0, a and u0 = w0 = 𝜑𝑥  = 0, at y = b/2, –

b/2. 

5.1. Convergence tests 

     It is aforementioned that the precision of the 

present method is dependent on a number of 

elements along longitudinal (Nx) and circumferential 

(Ny). Convergence studies are first accomplished to 

appoint the prerequisite number of elements in 

longitudinal and circumferential directions, as Nx and 

Ny, respectively. Fig. 2 shows convergence test of 

dimensionless deflections at the center point (x, y) = 

(a/2, 0) of 2-D FG cylindrical panels with different 

boundary conditions based on FSDT for (load = 

1MPa, a = 0.2, b = 0.2, h = 0.01, R = 1, nx = 1, nz = 1). 

Fig. 2 shows the convergence of the method is 

obtained between (60*60) and (70*70) mesh size for 

all the boundary conditions, the mesh size (60*60) 

are sufficient to achieve converged results. 

Figure 2. Convergence test of present results for dimensionless center 

deflections  of 2-D FG cylinderical panels with different boundary 

conditions for (nx , nz)= (1 , 1). 

5.2. Comparison studies 

     To check the reliability and proficiency of present 

method, two test cases for comparison studies are 

accomplished. As the first test, 1-D FG square panel 

with fully clamped and simply supported edges (a*b) 

= (0.2*0.2) subjected to uniform load = 1MPa for (R = 

1, h = 0.01, nx = 0, nz = 0,1,5) are considered. FSDT is 

used to predict the results for dimensionless center 

deflections of 1-D FG (Al/ZrO2) square panel with 

different mesh sizes are given in Table 2 and are 

contrasted with those adduced by Viola et al. [20]. 

Moreover, anticipation’s   present results for non-

dimensional center deflections are slightly smaller 

than those of FSDT with percentage difference 

between (1.03% - 1.7%). 

     To validate the present methodology in the state of 

2-D FG structures, another comparison study with 2-

D FG square plates is completed. Geometry of a 

cylindrical panel may guide to a square plate with 

sides (a*a) by assuming the following infinitely 

radius and very small angle (R = ∞, θ0 = 0o).

14*14 20*20 40*40 50*50 60*60 70*70
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Mesh size

w
/h

 

 
CCCC

SSSS

CSCS

SCSC
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Table 2. Comparison of the dimensionless center deflection (Al/ZrO2) square shell for various volume fraction index (nz) and nx = 0 and 

R/h = 100 with different mesh size. 
 

(w/h) at center SSSS 

Volume fraction index (nz) 

(w/h) at center CCCC 

Volume fraction index (nz) 

Mesh size 

5 1 0 5 1 0 

0.05827 0.04784 0.0339 0.01714 0.0139 0.009898 14*14 

0.06478 0.053716 0.0379142 0.01983 0.0163 0.01154 20*20 

0.070442 0.058926 0.04145 0.0224 0.01863 0.013127 40*40 

0.0712 0.05962 0.041914 0.022734 0.01896 0.013348 50*50 

0.07212 0.060426 0.0425 0.0231 0.01927 0.01357 60*60 

0.0721 0.060488 0.04248 0.02313 0.01931 0.013594 70*70 

0.07285 0.06114 0.042991 0.023488 0.01964 0.013831 Ref.[20] 

(FSDT) 

1.03% 1.1% 1.2% 1.5% 1.7% 1.7% Percentage 

difference 

Fig. 3 shows comparisons of the present method 

results with other different methods for change of 

deflection during longitudinal middle line (x, y) = (x, 

a/2) of thick 2-D FG square plates (a*b) = (1*1) and 

h = 0.4 with fully clamped edges under the effect of 

symmetric pressure PZ = 40 MPa. At the edges of 

plate (0, y, h/2), (0, y, -h/2), (a, y, h/2) and (a, y, -h/2), 

Young’s modulus is assumed to be 115GPa, 440GPa, 

69GPa and 300GPa; respectively, and Poisson’s ratio 

is assumed a constant value of 0.3. Logically excellent 

correspondence can be seen between present results 

and those obtained in accordance with the 3-D 

elasticity theory using FEM [6] and HSDT9, FSDT 

using GDQ [7]. Also, the model of HSDT9 predicts 

actual transverse shear deformation in such thick 

plates higher than FSDT. Consequently, the 

difference between results of the FSDT and 3-D 

elasticity theory is higher than of the HSDT9. So, it 

can be seen that the predictions of FSDT for 

deflections are higher than the HSDT9.
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Figure 3. (a)-(b) Comparisons of the present method results with other different methods for change of deflection along middle line (x, a/2) of thick 

fully clamped 2-D FG square plates. 

6. Results and discussion 

     It is mentioned above that the (60*60) mesh size 
has been found to give good convergence for the 2-D 
FG cylindrical panels. These have been utilized for 
perfecting the results, except if another way 
declared. In the present work, Poisson’s ratio is 
assumed to be constant and equal to 0.3 in all 
computations. Effects of material distribution on the 
change of dimensionless deflection during 
longitudinal middle line (x, 0) of the (CCCC, SSSS, 
CSCS, SCSC) cylindrical panels for various 
magnitudes of the power-law indices nx and nz are 
shown in Figs. 4, 5, 6 and 7; respectively. The 

deflections are computed for panels are assumed to 
be under uniform load Pza4/Em2h4 = 2.285715 and (R 
= 1, θ0 = 11.46o). As it can be seen in Figs. (4, 5, 6 and 
7), both value and model of the deflections rely on the 
magnitudes of the power-law indices. By increasing 
magnitudes of nz with a constant value of nx, 
deflection of the panels increases as the volume 
fractions of ceramics (i.e., alumina and zirconia) and 
stiffness decrease. Moreover, by increasing the 
magnitudes of nx with a constant value of nz, 
maximum deflection position changes because of the 
variation in material distribution during longitudinal 
direction.
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Figure 4. (a)-(d) Effects of material distribution on the change of dimensionless deflection during longitudinal middle line of fully clamped cylindrical 

panels with various magnitudes of the power-law indices. 
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Figure 5. (a)-(d) Effects of material distribution on the change of dimensionless deflection during longitudinal middle line of fully simply supported 

cylindrical panels with various magnitudes of the power-law indices. 
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Figure 6. (a)-(d) Effects of material distribution on the change of dimensionless deflection during longitudinal middle line of CSCS cylindrical panels 

with various magnitudes of the power-law indices. 
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Figure 7. (a)-(d) Effects of material distribution on the change of dimensionless deflection during longitudinal middle line of SCSC cylindrical panels 

with various magnitudes of the power-law indices. 
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     The effects of geometrical parameters on the 
change of dimensionless deflection during 
longitudinal middle line of 2-D FG cylindrical panels 
with various boundary conditions are shown in Figs. 
8, 9 and 10. Fig. 8 shows the effect of radius R = 2, 1, 
0.5, 0.25 and θ0 = 5.73o, 11.46o, 22.92o, 45.84o on the 
change of dimensionless deflection during 
longitudinal middle line of 2-D FG cylindrical panels 

subjected to uniform load Pza4/Em2h4 = 2.285715 
with (CCCC, SSSS) boundary conditions; respectively. 
It can be seen from Fig. 8 that with given power-law 
indices (nx = 2, nz = 2), the dimensionless deflection 
along longitudinal centerline of panel increases as 
the curvature to thickness (R/h) increases for 
various boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. (a)-(b) Effects radius to thickness (R/h) ratio on dimensionless deflection during longitudinal middle line of 2-D FG cylindrical panels with 

(CCCC, SSSS) boundary conditions; respectively. 

     Fig. 9 represents the influence of thickness to 
radius ratio (h/R) on the dimensionless deflection 
during longitudinal middle line of 2-D FG cylindrical 
panels with various boundary conditions. The 
deflections are calculated for panels subjected to 
uniform load PZ = 1MPa and has (R = 1, a = 0.2, b = 

0.2) and h/R = 0.025, 0.02; respectively. It is 
observed that with particular power-law indices (nx 
= 3, nz = 3), the dimensionless deflection during 
longitudinal middle line of 2-D FG cylindrical panels 
increases as the thickness to radius ratio decreases.
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Figure 9. (a)-(b) Effects thickness ratio (h/R) on dimensionless deflection during longitudinal middle line of 2-D FG cylindrical panels with various 

boundary conditions for (h/R) = 0.025, 0.02; respectively. 

     Fig. 10 shows the change of dimensionless 

deflection along longitudinal centerline due to 

uniformly applied load PZ = 1MPa, vs. dimensionless 

length a/h for fully clamped and fully simply 

supported cylindrical panels respectively. It is shown 

that for a/h = 10, 20, 30 and with particular power-

law indices (nx = 3, nz = 3), the variation of the 

dimensionless deflection along longitudinal 

centerline increases as the length to thickness ratio 

increases. The increase in dimensionless deflections 

is explained beyond to around a/h = 10, under this 

the variation of non-dimensional deflections is very 

small. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x 10
-3

x/a

w
/h

 

 
CCCC

CSCS

SCSC

SSSS

(a) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4
x 10

-3

x/a

w
/h

 

 
CCCC

CSCS

SCSC

SSSS

(b) 

421 



 

 

Qutaibah M. Mohammed, Hamad M. Hasan / Anbar Journal Of Engineering Science©Vol (7) 408 – 424 

  

 

 

 

 

 

 

 

 

Figure 10. (a)-(b) Effects length to thickness (a/h) ratio on dimensionless deflection during longitudinal middle line of 2-D FG cylindrical panels with 

CCCC, SSSS boundary conditions; respectively. 

7. Conclusions

Some universal views are explained as follows: 

[1] Predictions of the FSDT for deflections of 
fully clamped plates using generalized 
differential quadrature (GDQ) method are 
approximately the same as those obtained 
utilizing the finite element method (FEM). 

[2] The dimensionless deflections through 
longitudinal centerline increases with the 
increase in power-law index in thickness 
direction nz and decreases with the increase 
power-law index in longitudinal direction 
nx, for various boundary conditions. 

[3] The influences of the value and style of the 
deflections depends on power-law index in 
longitudinal direction nx, but power-law 
index in thickness direction nz only effects 
on the value of the deflections. 

[4] For various boundary conditions, the 
dimensionless deflections along longitudinal 

centerline increases as the radius to 
thickness (R/h) ratio increases. 

[5] The magnitudes of dimensionless 
deflections during longitudinal middle line 
with fully simply supported are greater than 
fully clamped boundary condition and 
(CSCS, SCSC) between them. 

[6] In small deflection range, cylindrical panels 
with simply supported edges is unsuitable in 
linear results. 

[7] The dimensionless deflection of the panel 
enhances as the thickness ratio (h/R) 
increases for various boundary conditions. 

[8] The non-dimensional deflections along 
longitudinal centerline increases with 
increase length to thickness (a/h) ratio for 
a/h = 20, 30 and becomes approximately 
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unresponsive to a/h ratio smaller than or 
equal 10. 
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