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ABSTRACT. 
In this paper, an analytical solution of a tapered bimodular beam has been developed. 

An Euler-Bernoulli beam theory with shear deformations has been utilized to obtain the 
solution. The bimodular beams are different from those unimodular beams in having two 
different moduli of elasticity one in compression and another in tension.  A verification for 
the solution has been performed using FEM analysis with ANSYS. The results of the 
program were very close the results of the analytical solution presented in this paper. 
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1. INTRODUCTION. 

The nonprismatic beams have been used in many civil and mechanical applications. 
Members of variable sections have a powerful significance in getting an optimum distribution 
of weight and strength and in some cases to satisfy architectural and functional requirements. 
From the most important applications of the nonprismatic members in engineering fields, are 
its use in highway bridges, aircraft structures and many other applications in civil and 
mechanical engineering. 

In civil engineering construction, tapered elements offer the following advantages over 
"traditional" prismatic elements: (1) Weight economy, which is translated into longer or taller 
structures; (2) superior shear carrying performance, particularly at the supports and joints 
with other  element, which is of vital importance in earthquake design; and (3) the bending 
moment and shear diagrams, which can correspond to the member's thickness, i.e., larger 
stiffness at the ends of the span reduces the positive moment due to gravity loads and 
increases the overall lateral stability and stiffness [1] 
This is why the nonprismatic members have been gaining great importance in the recent 
decades. 

The traditional scheme used in the analysis of nonprismatic beams is Euler -Bernoulli 
beam theory. Static analyses for tapered members are presented by many researchers, as 
shown in fairly complete lists in reference [2]. This reference states that the Euler -Bernoulli 
beam theory gives satisfactory results for beams with small tapering angles (15° or less). This 
result is based on Lee [3] and Boley  [4]. On the other hand, the shear analyses for tapering 
beams were studied by Chong et al. [5] and Schreyer [6]. The torsional problem was studied 
by Lee and Szabo [7]. The buckling problem was studied by Culver and Preg [8], Fogel and 
Ketter [9], and Gere and Carter [10]. Nonlinear bending of beams of variable cross section 
was studied by Verma and Murty [11]. Except special cases like Timoshenko and Young 
[12], Hibbeler [13] and Lee at al. [14], however, a lot of approximate and numerical solutions 
have been developed through the years. A straightforward early technique used to analyze a 
tapered beam is to divide it into a number of uniform elements, which is referred to as step 
representation, Wang CK. [15]. It has been well known that step representation is not 
efficient. Except for special cases like Timoshenko and Young [12], Hibbeler [13] and Lee at 
al. [14], no closed-form solution found for the analysis of the nonprismatic beams. This is 
why a lot of approximate and numerical solutions have been developed through the years. 

Most of materials exhibit different tensile and compressive strains given the same stress 
applied in tension or compression. Classical theory of elasticity assumes that materials have 
the same elastic properties in tension and compression, but this is only a simplified model, 
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and does not account for material nonlinearities. Many studies have indicated that most 
materials, including concrete, ceramics, graphite, and some composites, exhibit different 
tensile and compressive strains given the same stress applied in tension or compression. 
Those materials which exhibit different elastic moduli in tension and compression are known 
as bimodular materials. 

The elastic theory of bimodular solids was first proposed by Ambartsumyan [16], and 
Medri [17] by conducting experiments. Medri [17] reached the conclusion that the curve of 
stress-strain (   ) at the point of origin for materials with different moduli is nonlinear. 
Doong and Chen [18] developed a method for the analysis of different modulus problems 
based on an approximate trigonometric series. Zhang and Wang [19] proposed the finite 
element method for different moduli structures. Srinivasan and Ramachandra [20] applied a 
bimodulus finite element method to the calculation of large deflection of plates. Yang et al. 
[21] presented a method using the initial stress-finite element method for the analysis of 
bimodular structures. Tseng and Lee [22] used a finite strip method for the analysis of 
bimodular laminates. Ye [23] and Ye et al. [24] developed a finite element method in which 
variations of elastic modulus are different from that of Poisson’s ratio. Tseng and Jiang [25] 
used the bimodulus theory to analyze the stress of laminated structure. Liu and Zhang [26] 
adopted the method of accelerating the convergence factor to increase the rate of 
convergence. Jun et al. [27] reviewed most of the major contributions to the solutions of 
problems with different moduli of elasticity. The shear formulae of the nonprismatic beam 
are based mainly on an approach used by Norris, Cited in Maki [28] and Timoshenko and 
Gere [29], where the author developed an approximate solution for the problem using the 
principles of strength of materials 

In this paper, an analytical approach has been adopted to solve the problem of 
nonprismatic bimodular beams.  This paper proceds in a similar fashion but this time the 
problem of the nonprismatic beam is solved for a bimodular rather than unimodular beam. 
The results of this analytical solution have been compared with numerical results obtained 
from an FEM analysis using the famous commercial package ANSYS, and the results were 
found to be very close.  
 
2. PROBLEM FORMULATION. 
2. 1 Bimodularity of the Beam. 

Before discussing the bimodularity of the beam, the following assumptions and 
definitions must be mentioned first: 

1- The material of the beam is homogenous anisotropic. 
2- The fibers of the cross sections subjected to compression stress has a modulus of 

elasticity called En and the fibers subjected to a tensile stress has a different modulus 
of elasticity called Ep as shown in Fig.( 3). 

3- Straight planes of the cross sections of the beam before application the loads, remain 
plane after that application of the loads. 

4- The stress-strain relationship is bilinear as shown in Fig.( 1). 

 
2.2 Neutral Axis Location. 

This principle of determining the N.A. (abbreviated N.A) is that the forces normal to 
the face of the section must be balanced. Despite being this issue can be found in the 
literature concerning the bimodular beams, the author preferred to review this issue to 
simplify understanding next sections. Except the width of the beam, b, which is considered 
constant in this paper, all other sectional dimensions like h, hn, hp,y1,..etc, are varied along the 
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beam and will be written as functions of x like h(x) in final form of each formula. Untill the 
final formulae reached this notation will be ignored for simplicity. 

 
For the section of the beam shown in Fig.(4) 
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Combining this equation with the equation ( hhh np  ) and solving those two algebraic 
equations simultaneously give 
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These quantities will be altered in position in the case of negative bending moment, the 
tensile stresses will be above the N.A. and the compressive stresses will be below the N.A. . 

Those heights hp , hn , h from now on will be written  hp(x) , hn(x), h(x) indicating that those 
heights are at a distance (x ) from one end of the beam. Hence the values of hp(x) and , hn(x) 
will be varied along the beam. If the nonprismatic beam was a tapered one, then the values of 
the hp(x) and hn(x) will be as depicted in Fig.( 3) 

 
2.3 Bending Stresses. 

As pointed out in the introduction, the reference (Johnston 1976) [2] states that the 
Euler-Bernoulli beam theory gives satisfactory results for beams with small tapering angles 
(15° or less). This result is based on Lee [3] and Boley [4]. In addition, the problem of the 
cantilever wedge (Fig.( 3)) has been solved using theory of elasticity (Timoshenko and Gere 
[29]. It was found in this solution that for the values of the angle of taper (α) equal to 0°, 5°, 
10°, 15°, 20° and 20°, the error behind using the traditional Bernoulli-Euler formula for 
flexural stresses is 0%, 0%, 3%, 5% and 10%. 

And being most of the tapered beams in engineering practice almost have tapering angle 
less than  15° , the traditional flexure formula based on Bernoulli-Euler beam theory, will be 
adopted here in this paper for the nonprismatic beam but of course with variable depth. Later 
on, in the next sections a comparison with an FEM analysis will be taken to see the reliability 
of this theory for the nonprismatic beams.  
Taking sum of moments about N.A. equals zero, yields 
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Rearranging this equation and making use of Equation (1), yields 
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The negative sign has been added to the equation so that the positive bending moment will 
produce negative curvature according to the coordinate system adopted in paper. 
Where: 

12

3bhI  : moment of inertia of the cross section of the beam about the centroidal axis at a 

distance (x) from one end of the beam ,and 
Er : reduced modulus of elasticity for bimodular beams which equals to 
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 For a unimodular section (En=Ep=E) and by direct substitution in Equation (4) gives Er=E. 
The normal bending stress at any fibre within the cross section can be found using the flexure 
formulae with  
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(5) 

Where  
)(xp : the tensile normal stresses. 
)(xn  : the compressive normal stress, and 

1y : a depth measured from the N.A. along the cross section. 
 
2.4 Shear Stresses 

In same problem of the cantilever wedge stated in the previous section,  it was found in 
this solution that for the values of the angle of taper (α) equal to  0°, 5°, 10°, 15°, 20° and 
20°, the error due to using the traditional Euler-Bernoulli formula in deriving shear stresses 
was 50%, 50%, 48%, 47% and 45%. So the using of the traditional shear formula (

bI
VQ

 ) 

gives very misleading results when applied to nonprismatic beams.  
Hence it's important to seek an alternative solution that is more accurate than this formula 
even if the new solution was an approximate solution. The new solution is an approximate 
one, because it depends on Bernoulli-Euler theory which is in turn gives an approximate 
solution for the nonprismatic beams as illustrated in the previous section. 
The derivation of shear formulae will be separated into three parts: 
 

1- The shear formula at the fibers where the flexure stresses are tensile stresses. 
2- The shear formula at the fibers where the flexure stresses are compressive stresses. 
3- The shear formula at the N.A. 

 
Beside that and as mentioned in section 2.2, due to the altering in position for (hp) and (hn) in 
the case of negative bending moment, all the above three cases will be treated firstly for 
positive bending moment and then will be retreated again for the negative bending moment. 
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2.4.1 Positive Bending Moment.  

  For the case 1
n

p

E
E

r , refer to the element at a distance (x) from one end of the 

beam as in Figs.( 3 and 5). Then for a fiber lies at a depth (y1) below the (N.A.) where the 
flexure stresses are tensile stresses 
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Where 
I1 and I2 are the moments of inertia of the cross section at distances (x) and (x+dx) from one 
end of the beam. 
Noting the following: 
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dxSyy  12  and S: is the slope of the N.A. and its value can be calculated as follows  
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From Equation (1), substitute the expressions for (hp1 and hp2) and simplifying then 
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The same value would be obtained for (S) if the Equation (7) is written in terms of  (hn). As 
the slope of the taper is constant, the slope of the N.A. is also constant as it clear from 
Equation (7). 
The moment of inertia at a distance (x+dx) may be calculated as follows 
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Substituting the expressions for (I1, I2, V(x),y2 and S ) into Equation (7), neglecting  all higher 
powers and product terms of infinitesimals, simplifying and rearranging, yields 
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Now, the subscript used in (I1) is no longer needed and can be dropped. The final form of the 
shear formula for any fiber below the N.A. at a distance (x) from one end of the beam is 
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)(xp  is the shear stress where the flexure stresses are tensile stresses. 
By investigating this equation, it's important to note the following:  

1-The first term represents the shear stress in a prismatic beam, but this time for a 
bimodular beam and this arises in the quantity ( pQ ). 

2- The second term represents the effect of tapering on the shear stresses.  This term is 
the same as in the equation derived by Norris for shear stresses (Cited in MAKI [28] 
and Timoshenko and Gere [29]. Again the effect of bimodular ratio appears in the 
quantity (Qp) in this term.  

3- .The third term represents the effect of the bimodular ratio on the shear stresses. This 
could be seen in the quantity (S) which is the slope of the N.A. (Equation (7)). 
 

Now, to derive a formula for the shear stress above the N.A where the flexure stresses are 

tensile stresses and for the case 1
n
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r , refer to the element at a distance (x) from one 

end of  the beam as in Figs.( 3 and 6). Then for a fiber lies at a depth (y3) above the (N.A.) 
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y4 can be transformed into  y3  from the following relation 

 dxSyy  34  (10) 
Proceeding in the same way of deriving Equation (9), the following equation will be obtained 
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Unifying the depths of the fibers above and below the N.A. by one notation, say ( y1), the 
above equation can be written as follows 
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Where  
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)(xn : )(xp  is the shear stress where the flexure stresses are compressive stresses, and nQ
is defined as  
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Finally the shear stress at any section passes through the N.A. will be can be calculated using 
Equation (9) or Equation (11) with (y1 = 0), which leads to 
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The preceding derivations for the shear stresses are based on the case of (Ep < En). 

For the case ( 1
n

p

E
E

r ), the state of stresses will be for positive moments as in    Fig.( 7). 

One may go through the same procedure that leads to shear stress formulae for the case 
of 1r  in  positive moment, to get the shear stress formulae for  the case  1r  and also in 
positive bending moment, and the result is that the same Equations (9,11 and 13) was 
obtained for the shear stresses of this case.(that is for 1r ).

  
2.4.2 Negative Bending Moment. 
         The case of negative bending moment is depicted in Fig.(8). 
The shear stress derivation for this case is similar to the case when the bending moment is 
positive, except being the tensile stresses is above the N.A. and the compressive stresses is 
below the N.A. while the formulae for shear stresses are the same for the fibers above and 
below the N.A. except the difference in the modulus of elasticity, hence the same formulae 
described in Equations (9, 11 and 13) will be used to find the shear stress in the case of 
negative bending moment. 
 
2.5.1 Transformation of the coordinate y1. 

The ( y1) coordinate used in all the preceding flexure and shear stress formulae in this 
paper was measured from the N.A.. Being the N.A. is linearly varied along the beam, makes 
it more convenient to measure the (y) coordinate from the (x) axis. Hence a transformation 
formula will now be prepared for this purpose as follows: 
 

1- Zones of positive bending moment. 
a- If ( 1r ) then as explained in sections 2.4, the N.A. will be as shown in Fig.( 9). 
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Substituting the value of ( nh ) from Equation (1) into Equation (14), then 

By simplifying and remembering that  
n

p

E
E

r   , yields 

 )()(1 )1(2
1)( xx h

r
ryxy




  (15) 

 
b- If  (r >1) then as shown in Fig.( 10)  and as known from section 2.4 
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In a similar fashion discussed in the item a, then 
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1- Zones of Negative bending moment. 
a- If   (r <1) then as explained in sections 2.4, the N.A. will be as shown in Fig.( 11). 

Proceeding with the same procedure discussed for the positive moment, then 
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b- If  (r < 1) then as shown in Fig.( 12) and as known from section 2.4, and just like the 
previous cases the following relation may be obtained. 
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2.6.1 Flexural Deformations. 
        The flexural deformations considered in this paper are small deformations. Hence the 
curvature in Equation (3) is  

 2
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And this formula can found in many elementary calculus books. 
Where 

fv  : flexural deformations 
Then Equations (3 and 18) will lead to 
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And from this equation and by two successive integrations and applying the boundary 
conditions, the flexural deformations can be obtained. 
 
2.6.2 Shear Deformations.  

According to Timoshenko's beam theory, the transverse deformations are not only 
bending deformations (those discussed in the proceeding sections) but also shear 
deformations and the latter will be discussed in this section for bimodular beams. According 
to Timoshenko's beam theory, plane sections in beams will no longer remain plane sections 
when shear deformations are considered, but they will be curved as shown in Fig.( 13) which 
shows a deformed element in a beam due to shear stresses only.  
Shear deformations may be obtained by considering the slope of the deflected curve at the 

N.A. (as shown in Fig.( 13) which is equal to
dx
dvs

c  , 

Where sv  is shear deflection at the N.A., 

c : shear strain at the N.A. which equals the shear stress divided by the modulus of elasticity 
in shear. 
Now, integrating this equation will lead to the shear deformations. But using this method to 
find the shear deformations is not accurate for two reasons: 
 

1- The deflection is based upon shear strains at the N.A. and neglects the shear variation 
throughout the section. 

2- The deflection is based upon pure bending theory only. 
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The second defect can be removed by using a more exact approach like theory of elasticity. 
The first defect can be removed by using the principle of virtual work (Timoshenko and Gere 
[29]. 

Hence the principle of virtual work (specifically unit load method) will be utilized in 
this paper to obtain the shear deformations. The equation that yields when applying the 
virtual work method 

  dVv us .
 (20) 

Where 
sv  transverse shear displacement caused by real shear forces, 

uV  virtual shear forces resulting from application of a unit load in the direction of sv . 
d  differential of real shear displacement caused by real loads. 

 
Refer to Fig.(14) 

dydzV uu .   and  dxd    
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Then Equation (20) will become 
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(21) 

:l Shear stress due to real loads. 
:u  Shear stress due to virtual unit load in the direction of sv . 

Since there are two moduli of elasticity in flexure, one in tension ( pE ) and one in 
compression   ( pE ), then there are two muduli of elasticity in shear, one in tension and one in 
compression. From reviewing the literature (Jun et. al. [27]), it was found that many 
researchers proposed different formulae for the modulus of elasticity in shear. Those 
proposals are not based on rigorous analysis rather than suggestions dependent mainly on the 
researchers’ intuition. In addition those formulae when used to obtain the shear deformations 
for bimodular beams, they do not lead to the traditional formulae for unimodular beams when 
the beam considered as unimodular. For all this, the author suggests the following value for  
( G ) to be used in Equation (21) 
 

 
)1(2 

 r
r
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Where: 
rG : the reduced shear modulus of elasticity (reduced because its value is always less than G 

for unimodular beam). 
The author adopted Equation (22) because the flexural analysis of the bimodular beam 

led to the use of the traditional flexural formula, Equation (3), but this time with the reduced 
modulus of elasticity rE , a fact that inspired the use of Poisson's relation with rE . Later this 
will show reasonable results when compared with FEM analysis. In addition, when the 
section is unimodular section then rE  and the value of EEE np   in Equation (22) leads 
to the value G which is the value of shear modulus for a unimodular beam.  
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2.7 Application Example. 
The application example will be a cantilever loaded with a concentrated load at the free 

end as shown in Fig.( 15). 
In this example the flexural and shear stresses in addition to the flexural and shear 
deformations will be calculated. Before proceeding with the calculations, the following basic 
quantities will be calculated first. 
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xPxM .)(     and   PxV )(  

When the following given values for mho 25.0 , ml 3 , kNP 100  are used in above 
basic relations and in the equations of sections (2.3 and 2.4), the following results will be 
obtained. 
 
2.7.1 Flexural deformations. 
       As mentioned in section 2.5, the flexural deformations can be calculated from Equation 
(19)  

 32
2

)21(

)(

l
xIoE

xP
IE
xM

dx

vd

r
r

f




  

(23) 

In the above formula, the expression of the moment of inertia has been defined using ( ho , he
and  l ) because this will simplify the next expressions. 
Integrating Equation (23) twice and imposing the boundary conditions, which, for the 
cantilever example in this research are  
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This will leads to the following deflection equation 
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Where:  c1 and c2 are constants, and their values are as follows 
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2.7.2 Shear deformations. 
        From Equation (21), the shear deformation using unit load method is 

 
V r

l
us dxdydz

G
v


 .

 
 

And this equation can be written as 
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(24) 

Where 
pu , nu  the shear stress due to unit load applied in the direction of the required 

displacement, as defined in Equations (9 and 11) respectively, with xxM .1)(   and  1)( xV  

pl , nl  the shear stress due to real load applied, taken from Equations (9 and 11) respectively 
with xPxM .)(   and  PxV )( . 
The expressions for, rG , ph and nh are taken from Equations 22, 1 and 2) respectively. 
The integration of the Equation (24) started from the point 1x  and not from zero because the 
moment and the shear force due to unit load at distance ( 1x ), from the free end until this point 
are zeros. Hence this formula will determine the shear displacement at the point ( 1x ). 

The results of the shear displacements are so long that it could not be expressed 
symbolically here symbolically. Hence these results will be obtained and presented 
numerically for each case of the example presented in this section. 
For all the graphs presented in this research the quantity (y/l) is the ratio of the distance from 
the N.A. to a specific depth of the section, while the quantity (x/l) is the ratio of a distance 
from the free end to the length of the beam. 
 
 
3. CONCLUSIONS. 
As mentioned in the introduction, most of materials exhibit different moduli in compression 
and in tension. The ratio between those moduli is called the modular ratio. The modular ratio 
for some materials like steel approaches unity, but for others it is not. This will result in 

different stresses and deformations according to the modular ratio. The quantities 
r

p

E
E

and 

r

n

E
E which is mentioned in the formulae of the stresses and deformations, Equations (5, 9, 11, 

19 and 21), by simple simplification, it can be shown that these quantities is equal to 

4
)1( 2r and 

r
r

4
)1( 2 respectively. Hence the flexural and shear stresses in a bimodular 

beam is not depending on the modulus in tension or in compression alone rather than on the 

ratio between them , that is the modular ratio (
n

p

E
E

r  ). This is why the graphs and the tables 

for the flexural and shear stresses and the flexural and shear deformations at a specific section 
are varying with the modular ratios. The more important of that is that the material for a 
specific loadings and dimensions would have different stresses and deformations according to 
the modular ratio of that material. From this one could see the importance of the bimodular 
analysis over the unimodular analysis (considering one modulus of elasticity). To see this 
point in a specific application, the cantilever beam studied in this paper has been analyzed as 
a bimodular beam with different values of the modular ratio and another time as a unimodular 
beam with one modulus of elasticity equals to the average of the two moduli of the beam. The 
differences between the two approaches of the analysis in stresses and deformations are listed 
in table 5. This difference is significant and cannot be ignored for large and small modular 
ratios. These differences in results are also depicted graphically in Figs.( 16 to 25). The shear 
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stresses are not having the maximum values at the N.A. within the section anymore but in 
most cases occur at the taper as shown in Tables (3 and 4) and the Figs.( 16 to 21) except at 
the locations where the bending moment is zero like the free end of a cantilever beam. Being 
the maximum shear stress in bimodular tapered beam occurs mostly at the taper is due to the 
tapering in the beam and the modular ratio. The contribution of the tapering is found in the 
second and third terms of the shear stress formulae, Equations (9 and 11). This contribution is 

represented by the slope of the taper (
dx
dh ) which is stated explicitly in the second term and 

implicitly in the third term because the slope of the N.A. (S) is depending partially on the 
slope of the taper (refer to Equation (7)) . The contribution of the modular ratio is found in 

the three terms of  Equations (9 and 11) and represented by the quantity 
r

p

E
E

 which in turn is 

stated implicitly in the quantity ( nQ ). In the third term this contribution is found in the slope 
of the N.A. (S).  The reduced modulus of elasticity rE , Equation (4) can be written as 

2)1(

4

r
E

E p
r


 , hence the flexural displacement formula, Equation (19) and the shear 

displacement formula,  Equations (21 and 22)  will have larger values for the larger modular 
ratios and  vice versa. This is depicted graphically in Figs.( 25). The solution of the 
bimodular material problems establishes more accurate theoretical solution for the composite 
materials which have full interaction.  The accuracy of the solution has been established by 
comparing the solution with the solution of the finite element method using the well known 
commercial package Ansys. Table (6) lists maximum errors in the paper solution in 
comparison with the solution of the FEM. Maximum error in flexure deformation was 0.06% 
that in shear stress was 2.3% and that in deformation was 2.0 %. Hence the solution has a 
good accuracy in the view of the structural analysis. Those are can be interpreted by noting 
that the compatibility of the deformations and the stresses was not considered in the solution.  

Beside that the vertical stresses have been ignored. This is regarding the paper solution. 
Concerning the FEM, the analysis was not conducted to different meshing in size to establish 
the stability and accuracy of the solution. This could be returned to being the errors were 
relatively very small and accepted. Finally Fig.(28) shows the shear stresses distribution 
which is different from that for the prismatic and even from that for the unimodular tapered 
beam. 
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Table (1): Shear Deformations along the beam for different bimodular ratios (mm). 
 

r x / l 
0 0.25 

0.25 0.110 0.075 
0.5 0.212 0.135 
1.0 0.336 0.214 
2.0 0.425 0.270 
3.0 0.440 0.285 

 
Table (2): Flexural Deformations along the beam for different bimodular ratios (mm). 

 

r x / l 
0 0.25 0.5 0.75 

0.25 20.22 10.59 4.28 0.97 
0.5 26.19 13.72 5.54 1.26 
1.0 35.95 18.83 7.60 1.73 
2.0 52.39 27.43 11.08 2.52 
3.0 67.09 35.13 14.19 3.23 

 
Table (3): Flexural Stresses at Taper (MPa). 

 

r 
x / l 

0.25 0.5 0.75 1.0 
Tensile Compressive Tensile Compressive Tensile Compressive Tensile Compressive 

0.25 25.00 -50.00 28.12 -56.26 27.00 -54.00 25.00 -50.00 
0.5 28.46 -40.24 32.00 -45.26 30.72 -43.46 28.46 -40.24 
1.0 33.34 -33.34 37.50 -37.5 36.00 -36.00 33.34 -33.34 
2.0 40.24 -28.46 45.26 -32.00 43.46 -30.72 40.24 -28.46 
3.0 45.54 -26.28 51.22 -29.56 49.18 -28.40 45.54 -26.28 

 
 

Table (4): Shear stresses at Taper, above and below N.A. (MPa). 
 

r 
x / l 

1/4 1/2 3/4 
Below N.A. Above N.A. Below N.A. Above N.A. Below N.A. Above N.A. 

0.25 -1.25 -2.50 -1.41 -2.81 -1.35 -2.70 
0.5 -1.42 -2.01 -1.60 -2.26 -1.53 -2.17 
1.0 -1.67 -1.67 -1.88 -1.88 -1.80 -1.80 
2.0 -2.01 -1.42 -2.26 -1.60 -2.17 -1.54 
3.0 -2.28 -1.31 -2.82 -1.34 -2.80 -1.24 
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Table (5): Comparison between Bimodular and Unimodular Analysis (with Eave using an 

FEM analysis). 
 

r Ep (MPa) En (MPa) 
Eave=(Ep+En) / 2 

(MPa) 
Difference % in 
Max.Flexural 
Deformation 

Difference % in 
Max.Flexural 

Stresses 

Difference % in 
Max.Shear 

Stresses 
0.25 35000 140000.0 87500.0 28.0 33.3  33.3  
0.5 35000 70000.0 52500.0 7.3 17.1 17.0 
1.0 35000 35000.0 35000.0 1.3 0.0 0.3 
2.0 35000 17500.0 26250.0 7.3 13.7 17.0 
3.0 35000 11666.7 23333.3 18.6 26.8 33.5 

 
 
 

Table (6): Maximum Error in Paper results in Comparison with an FEM analysis. 
 

r Flexural Stresses 
Error % 

Shear Stresses 
Error % 

Deformations 
Error % 

0.25 0.05 2.3 2.0 
0.5 0.04 1.7 1.6 
1.0 0.01 1.0 0.1 
2.0 0.06 1.8 1.6 
3.0 0.04 2.1 1.7 

 
 
 
 
 
 
 
 

 
 

Figure (1): The stress strain curve for a bimodular material. 
 
 
 
 
 
 
 
 

 
 

Figure (2): A cross section in a bimodular beam. 
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Figure (3): A Tapered bimodular beam in positive bending moment. 
 
 
 
 
 
 
 

 
Figure (4): A wedge cantilever beam. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5): Shear stresses below the N.A. in an element of a bimodular beam with 
( r <1) and positive bending moment. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure (6): Shear strsses above the N.A. in an element of a bimodular beam  with 
( r <1) and positive bending moment. 
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Figure (7): A Tapered bimodular beam in positive bending moment with  (r >1). 
 
 

 
 
 
 
 
 
 
 
 
 

Figure (8): An element taken from a bimodular beam in Negative bending moment. 
 

 
 

  
  
  

Figure ( 9): The transformation of the y coordinates of the N.A. and the Cartesian y 
coordinate for Positive moment and ( r<1). 

  

  
  
  
  

 
Figure (10): The transformation of the y coordinates of the N.A. and the Cartesian y 

coordinate for Pos. moment and (r>1). 
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Figure (11): The transformation of the y coordinates of the N.A. and the Cartesian  
coordinate for Neg. moment and (r<1 ). 

  
  
  
  
  

 
Figure (12): The transformation of the y coordinates of the N.A. and the Cartesian y 

coordinate for Pos. moment and (r>1). 
 

  
  
  
  
  

 
Figure (13): Shear stress deformations in the section of the beam. 
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Figure (14): An element in a beam with flexure and shear stresses in addition to shear 
deformations. 

 
 

  
  
  
  

 
Figure (15): A cantilever loaded with a concentrated load at the free end. 

 
 

  

Figure(16): Shear stress at the free end of beam.     Figure (17): Shear stress at distance (1/6 L) from 
the free end of the beam. 
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Figure (18): Shear stress at distance 
(1/4 L) from the free end of the beam. 

  Figure (19): Shear stress at distance (1/2 L) from 
the free end of the beam. 

  

  

Figure (20): Shear stress at distance 
(3/4 L ) from the free end of the beam. 

    Figure (21): Shear stress at distance ( L ) from 
the free end of the beam. 
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Figure (22): Flexure stress at distance 
(1/4 L) from the free end of the beam. 

Figure (23): Flexure stress at distance ( 1/2 L ) 
from the free end of the beam. 

  
  

  

Figure (24): Flexure stresses at distance 
( L ) from the free end of the beam. 

Figure (25): Flexure Deformations along the 
beam. 

  
  

-0.25 0.25-0.50 0.00 0.50
Distance from N.A. to Depth of Section  y/h

-25.00

25.00

-50.00

0.00

50.00

Fl
ex

ur
e 

St
re

ss
 (M

Pa
) a

t X
/L

=
1/

4

r=0.25

r=0.5

r=1.0

r=2.0

r=3.0

-0.25 0.25-0.50 0.00 0.50
Distance from N.A. to Depth of Section  y/h

-37.50

37.50

-75.00

0.00

75.00

Fl
ex

ur
e 

St
re

ss
 (M

Pa
) a

t X
/L

=
1/

2

r=0.25

r=0.5

r=1.0

r=2.0

r=3.0

-0.25 0.25-0.50 0.00 0.50
Distance from N.A. to Depth of Section  y/h

-25.00

25.00

-50.00

0.00

50.00

Fl
ex

ur
e 

St
re

ss
 (M

Pa
) a

t X
/L

=
1

r=0.25

r=0.5

r=1.0

r=2.0

r=3.0

0.00 0.40 0.80 1.20
Distance along Beam (X/L)

0.00

40.00

80.00

Fl
ex

ur
e 

D
ef

or
m

at
io

ns
, V

f (
m

m
)

r=0.25

r=0.5

r=1

r=2

r=3



Anbar Journal for Engineering Sciences 
 

100 
 

 

  

 
Figure (26): Flexural Stresses at Distance (1/2 L) from 

the free end (r=0.5) (FEM Analysis with Ansys). 

 
Figure (27): Shear Stresses at Distance (1/2 L) from the 

free end (r=0.5) (FEM Analysis with Ansys). 
 
 
     

  
  
  

 
Figure (28): Shear stress Distributions along the Beam with (r=0.25).  
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  المرونةمعامل  المستدقة مزدوجةلعتبات ل يتحلیلحل   
    افر خلیفة جدعانظ.م.م 
    قسم الهندسة المدنیة 

جامعة الانبار -كلیة الهندسة    

  الخلاصة
 تشوهات مع برنولي -اویلراستخدمت نظریة .معامل المرونةمزدوجة الموشوریة ال غیر للعتبات حل طورفي هذا البحث 

 احدهما مرونة المعامل بكونها تمتلك معاملي أحادیةالعتبات مزدوجة المعامل تختلف عن العتبات . الحل إیجادالقص في 
 أعطىحیث   Ansys باستخدام برنامجتم تدقیق الحل بالمقارنة مع تحلیل العناصر المحددة  .مختلف للشد وآخرللانضغاط 

    .نتائج قریبه جدا من النتائج المستحصلة من الحل المطروح في هذا البحث البرنامج

 
.عتبات، ثنائي معامل المرونة، غیر موشوري، مستدق :رئیسیةالكلمات ال  
 


