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ABSTRACT. 
        Linearised dynamic analysis of beams subjected to lateral forces and composed of 
materials which have different moduli in tension and compression is presented. The position 
of the neutral surface was rendered independent of the spatial and temporal coordinates by 
introducing a special assumption which reduced the coupled nonlinear problem of the flexure 
of such a beam into a linear one. The actual position then became a function of section 
geometry and the two elastic moduli and was determined by the equivalent section method. 
The elemental dynamic stiffness matrix was derived using the exact displacement shape 
functions governed by the governing partial differential equation and the structural stiffness 
matrix was assembled according to the usual assembling methodology of structural analysis. 
Symbolic and numerical examples were solved to show the applicability and efficacy of the 
proposed method. 
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1. INTRODUCTION.  
      In traditional application of mechanics of materials theories, it is generally assumed that 
materials have the same elastic properties in tension and compression, but this is only a 
simplification, and is not a refined model for the actual behaviour of engineering materials. 
Many studies have indicated that most materials exhibit different tensile and compressive 
strains given the same stress applied in tension and compression. Many engineering materials 
such as concrete, reinforced concrete, metals, graphite, plastics and cord-rubber display such 
bimodular behaviour [1].  

Of a special status for this matter are the composite materials, which are receiving 
increasing attention in structural applications because of important weight savings. The 
weight savings emerge as a result of the combination of a light, weak, and flexible matrix 
material with a very strong and stiff reinforcing material in the form of fibres or granules. One 
of the important characteristics of composite materials is that they often exhibit different 
moduli or stiffnesses under tensile loading than those under compressive loading. Thus, large 
errors may arise if the same modulus assumption is still used. Therefore, it has become a new 
research trend for many researchers to study the behaviour of structures made of those 
materials in different contexts. 

The first scholar who described the behaviour of members made of those bimodulus, or 
bimodular materials was Timoshenko [2], but this problem was generally forgotten or ignored 
up to the beginnings of 1980’s of the twentieth century when the revival of interest came from 
many researchers. Yao and Ye [1] reported that the first scholar who founded an elastic theory 
of bimodular materials was Ambartsumyan, a Russian scholar. Another researcher, Medri [3], 
an American scholar, presented a model for the mechanical characterization of isotropic 
materials with different behaviour in tension and compression. Bert and Tran [4] developed a 
transfer-matrix method, based on Timoshenko's beam theory for a bimodular beam and 
applied the method to transient response problems. Reddy [5] presented a finite element 
method for the transient analysis of bimodular, fibre-reinforced, rectangular plates made of 
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aramid-rubber and polyester-rubber materials. Rebello et al. [6] studied the vibration of a 
thick sandwich beam constructed of bimodular material with rectangular cross section and 
presented both analytical and experimental investigations. Benveniste [7] presented a 
constitutive theory for transversely isotropic bimodular materials in the framework of large 
deformations then derived the special case of infinitesimal strains which he used to solve 
some wave propagation problems. Chen and Juang [8] investigated the dynamic stability of 
bimodular thick circular and annular plates subjected to a combination of a pure dynamic 
bending and a uniform dynamic extensional stress in the plane of the plate. Chen et al. [9] 
investigated the dynamic stability of a bimodular beam subjected to a periodic load using the 
finite element method. Iwase and Hirashima [10] presented an analytical treatment of the 
dynamic behaviour of beams made of bimodular materials under moving load and determined 
the natural frequencies and mode shapes of those beams using the transfer matrix method. 
The same authors, Iwase and Hirashima [11] treated the problem of bending of beams by 
applying Levinson’s beam theory, which include shear deformation and warping of the cross 
section, to bending analysis of thick rectangular beams made of bimodular materials. Yao and 
Ye [12] presented an analytical solution for the static bending stresses in a bimodular beam 
subjected to lateral loading. Another paper of the same authors [13] also contained an 
analytical solution for bending-compression of a column subjected to combined loading using 
a flowing coordinate system. Baykara et al. [14] presented an analytical solution for the large 
horizontal and vertical deflections at the free end of a cantilever beam made of a bimodular 
material under an end moment. Yao and Ye [1] introduced different tension and compression 
moduli into the analysis of statically indeterminate structures and presented a semi-analytical 
method for the analysis of these structures. Yao and Wang [15] found analytical solutions for 
bending-compression and bending-tension members with different moduli under complex 
stress and subjected to combined loadings. Another paper for Yang and Wang [16] presented 
an approach to solve dynamic bimodular problems. They used a smoothing technique to avoid 
the constitutive discontinuity which results from considering the stress-strain curve of 
bimodular materials as a straight line with a slope discontinuity at the origin. Chen-Zhong 
[17] presented an analytical solution for the deflection of a geocell with different tension and 
compression moduli and analyzed the factors affecting the solution of geocell's deflection. 
Khan et al. [18] investigated the effect of bimodularity on free vibration of all edges simply 
supported, two-layered, cross-ply thick plates using Bert's constitutive material model. 

The analysis of structures made of bimodular materials is inherently nonlinear and the 
exact solutions may not be accessible, especially in dynamic analysis. Therefore, in this study, 
the linearised dynamic analysis of the flexure of bimodular beams is presented. The procedure 
proposed in this paper is easy to follow, and practical. To fully delineate this procedure, the 
dynamic stiffness matrix of a bimodular beam is derived and both symbolic and numerical 
examples are solved to show the applicability and efficacy of the proposed method. 

 
2. GOVERNING EQUATION OF MOTION. 
    The governing partial differential equation of transverse vibration of a one-dimensional 
beam of uniform flexural stiffness, EI, under the Euler-Bernoulli kinematical assumptions is 
 

 ),(),(),(
2

2

4

4

txq
t

txum
x

txuEI 






         (1) 

 
where EI is the uniform flexural stiffness, u(x,t) is the transverse displacement of a point on 
the neutral axis of the beam. The position of this point along the axis is fixed by the spatial 
coordinate, x. The transverse displacement in a vibration problem is, as evident from the 
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notation, a function of both position and time. The parameter, m, is commonly said to be the 
mass per unit length of the beam, but should, more precisely, be called the linear mass density 
of the beam. The right hand side is the time-varying load. 

Variation in section dimensions of the beam, along its axis, introduces only spatial 
dependence of the product EI whether the problem at hand is a static problem or a dynamic 
one such as the free or forced transverse vibrations of a beam. Thus for those problems, the 
governing equation remains a linear partial differential equation, albeit a variable coefficients 
one. This amounts to the modification of equation (1) to take the form [19] 
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Another, rarely-met in practice, situation calls for the modification of equation (2) above to 

take spatial variation of the linear mass density into consideration. Equation (2), would then 
take the form 
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For the present problem, however, the position of the neutral surface depends on the 
external force distribution which is in turn made up of the externally applied time-varying 
loads and the inertia force. The inertia forces are acceleration dependent. Thus the expression 
of EI becomes dependent on 22 / tu  such that the governing equation becomes of the form 
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Equation (4) above has the appearance of a nonlinear partial differential equation but it is, 

in fact, a nonlinear partial integro-differential equation (Kurdi and Saleh, unpublished work). 
In this general form, equation (4) is, in all probability, not amenable to solution by separation 
of variables or other methods of linear analysis, nor yielding for solution in closed form by 
any other method known to the authors. In order to form a picture for the effect of 
bimodularity on the dynamic response of beams, linerisation of the governing equation (4) 
seems a feasible first approach. The linearisation of equation (4) above is presented below. 
The expression )/,( 22 tuxEI   is to be replaced by an approximate substitute by the method 
of equivalent sections so as to replace the nonlinear equation (4) by a linear approximate one. 
This linearisation will automatically restore the original character of the governing equation, 
i.e. being a partial differential equation, not an integrao-differential one. 

In order to substantiate this linearisation, the general expression of EI may be replaced by 
the corresponding expression of the particular case of pure bending which turned out to be 
independent of the spatial and temporal coordinates [20, 13]. 

To complete the linearised analysis, the neutral surface position for pure bending loading 
case is first derived using the equivalent section method. 

Referring to Fig.(1), any section of a beam subject to a pure bending loading condition 
would be under the action of uniform moment, M. The section height and width are denoted 
by h and b, respectively. The tensile region height which is the distance down (or up) to the 
extreme fibre from the neutral surface is h1, while the compressive region height is h2. The 
tensile modulus is denoted by Et while the compressive modulus is denoted by Ec. Again, 
tensile and compressive areas are referred to as At and Ac, respectively. 
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The strategy is to convert the compressive area into an equivalent tensile one in the sense 
of changing the geometry and adopting the tensile modulus, Et, as the unique modulus of the 
equivalent section. beq 

The compressive stresses acting on the original and equivalent sections are, respectively 

 eq
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The pivotal point in what follows is to keep the original and the equivalent section strains 

the same in order to preserve compatibility. Another (force) condition is to set N=Neq, the 
original and the equivalent compressive force resultants. 

These compressive forces, for any stress distribution, is 
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where beq , is the equivalent width of the converted section.  

Now applying the condition N=Neq  and  ε=εeq  gives 
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First moment around the neutral axis should remain zero.  
Thus, )2/()/()2/()2/( 222211 hbhEEhhbhbh tc

eq  , which gives 
 

 2
1

2
2 hEhE tc   (8) 

 
Equation (8) above together with h=h1+h2 gives 
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Of course, equations (9) are rigorous only for the pure bending case. However, the main 

assumption of the present work is that they could be used as a first order approximation for 
the transverse loading case, as was detailed before. By virtue of being independent of the 
external moment distribution, equations (9) above could be used to linearise the hitherto 
nonlinear problem. 

To do so, a new but, also uniform, equivalent flexural stiffness is calculated as follows: 
(EI)eq=EeqIeq, or ][)( 3
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Therefore, instead of solving equation (4) in its full nonlinearity, the remaining of this 

paper will be concerned with solving the following linearised form 
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where h1 and h2 are given by equation (9). In particular, for the free vibration case, equation 
(11) takes the following form 
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For brevity, the expression ][
3

3
2

3
1 hEhEb ct   in equations (11) and (12) above is denoted 

by EI ; the equivalent flexural stiffness. Thus for free vibration of a bimodular Euler-Bernoulli 
beam, the linearised governing equation may be written as 
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Using the method of separation of variables, the solution will be of the form 
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Substituting the above expression in equation (13) and performing separation of variables, 

the solution will be 
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The general solution is 
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Then for free vibration of a uniform rectangular beam made of bimodular material, the 

response is given by 
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In order to give an impression of the effect of bimodularity on the dynamic response of 
structures, a symbolic example is given below. The comparison of the natural frequencies in 
the unimodular and bimodular cases reveals both the extent of the effect of bimodularity and 
the efficacy of the proposed linearisation in revealing this effect at relatively low 
computational and conceptual costs. 

 
Symbolic Example 2.1 
     It is required to determine natural frequencies and mode shapes for the beam shown in 
Fig.(2) below.  

For the given problem, the boundary conditions in terms of the transverse displacement 
could be written as 
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Now recalling equation (15a), the above boundary conditions written in terms of u(x,t) 

imply another set of boundary conditions written in terms of )(x  as follows 
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The first row in equations (E2.1b) above implies 
 

 0 CA  (E2.1c)  0 CA  
 
The second row in equation (E2.1b) above implies 
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where A, B, C and D are the arbitrary constants appearing in equation (15a).  

Equations (E2.1c) gives 0 CA . Substituting this into equation (E2.1d) gives 
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(E2.1e) 
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Equations (E2.1e) above could be put in a matrix form as follows 
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To obtain a non-trivial solution of equation (E2.1f) above, i.e. a vibrating beam, the 
determinant of the coefficients matrix in equation (E2.1f) should be set to zero. 
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Equation (E2.1g) is known as the frequency equation. This is equivalent to 
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Equation (E2.1h) is a transcendental equation whose solution cannot be found exactly. An 

approximation of this solution could be found by trial and error 
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Equation (E2.1j) above is a solution representing an infinity of natural frequencies 

corresponding to an infinity of mode shapes. Substituting those values of L  into equation 
(15c) gives 
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is an infinity of natural frequencies corresponding to the free vibration of the beam of this 
example. 

If the beam was a unimodular one, using an exactly parallel analysis, the corresponding set 
of natural frequencies is found to be [21, 19] 
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Comparing equation E2.1k and E2.1l, the ratio n
b
n  /  is found to be 
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The superscript b in b
n

 
above indicates that the natural frequency was computed assuming 

bimodularity of the beam material. The ratio expressed in equation (E2.1m) above could be 
substantially simplified as follows: The convention was to choose E=Et, then 
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Taking limits as 1rm  gives 
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Equation (E2.1p) above indicates the exactitude of the present analysis despite adopting 

the assumption of using equation (9) for the location of the neutral surface depth of any beam-
column. This is attributable to the fact that axial forces are absent in the present example 
leading to an exact linear substitute of the governing equation (4). 

Now substituting equation (E2.1o) into equation (E2.1m) gives 
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Equation (E2.1q) above is quite significant since writing it the other way around; 

i.e. b
nrrn mm  )]2/()1[(  , means that ignoring bimodularity of this beam leads to 

underestimating each natural frequency by the ratio )2/()1( rr mm   that is less than 1 
for 1rm .  
 
3. A DYNAMIC STIFFNESS MATRIX FOR THE LINEARISED ANALYSIS OF          
    BIMODULAR BEAMS. 
        So far, the linear partial differential equations governing forced and free vibration of an 
Euler-Bernoulli beam were modified to produce linearised partial differential equations that 
govern forced and free vibration of a bimodular Euler-Bernoulli beam. In particular, the free 
vibration equation was solved subject to a set of boundary conditions to yield natural 
frequencies, mode shapes and response histories for a bimodular beam corresponding to the 
given boundary conditions. The effect of bimodularity was already noticeable despite the 
linearised character of the analysis. 

In this section a modification of the standard Euler-Bernoulli dynamic stiffness matrix is 
given. The modification extends the applicability of this method to the linearised analysis of 
bimodular beams. In order to start constructing a dynamic stiffness matrix for a bimodular 
Euler-Bernoulli member, consideration of a general such member is required. Figure 3 
depicts such a member sr~  (i.e. a bimodular Euler-Bernoulli beam extending between points r 
and s on a bimodular structure). 

End moments Mr, Ms, and end shears Vr and Vs along with transverse deflections Ys , Yr and 
end rotations θr and θs are shown in their positive sense in Fig.(3), above. 

This is a typical start for constructing a member stiffness matrix by adopting exact shape 
functions derived from the governing differential equation. 

The first three spatial derivatives of the function   in (15a) equation are 
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Referring to Fig.(3), the appropriate boundary conditions to be imposed are; 
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It is interesting to note that the first column in equation (19a) contains only force boundary 
conditions, while the second contains only displacement boundary conditions. 

Similarily, boundary conditions for the other end are 
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To build a stiffness relation (the dynamic stiffness matrix in this case) the end forces, Mr, 
Ms, Vr, Vs need to be expressed in terms of the end displacements; θr, θs, Yr and Ys 
respectively. Substituting the appropriate values of x into equations (15a) and (18) and using 
equations (19a) and (19b), this expression could be obtained. 

Using the fourth of equations (19a) gives 
 

 rYDB   (20a) 
 
while using the fourth of equation (19b) gives 
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Using the second row of equations (19a) gives 
 

 rCA    (20c) 
 
while using the second row of equations (19b) gives 
 

 sLDLCLBLA   sinhcoshsincos  (20d) 
 
Equations (20a, b, c and d) could be cast in the following matrix form 
 

 

























































s

r

s

r

D
C
B
A

LLLL

LLLL











coshsinhcossin
1010

sinhcoshsincos
00

 (21) 

or more concisely  
 cc DSR   (22) 

 
inverting S systematically, we obtain 

 cc DR -1S  (23) 
 
Performing the symbolic inversion by hand or by a computer algebra package; like Maple, 

we find that
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







































s

r

s

r

S

D
C
B
A






1  (24) 

where 

 )coscosh1(2
coshcossinsinh1)1,1(1

LL
LLLLS







   

 )coscosh1(2
coshcos)2,1(1

LL
LLS








 
 

 )coscosh1(2
sincoshsinhcos)3,1(1

LL
LLLLS









 
 

 )coscosh1(2
sinhsin)4,1(1

LL
LLS








 
 

 )coscosh1(2
cossinhsincosh)1,2(1

LL
LLLLS









 
 

 )coscosh1(2
sinsinh)2,2(1

LL
LLS








 
 

 )coscosh1(2
1sinsinhcoscosh)3,2(1

LL
LLLLS









 
 

 )coscosh1(2
coshcos)4,2(1

LL
LLS








 
 

 )coscosh1(2
coshcossinsinh1)1,3(1

LL
LLLLS









 
 

 )coscosh1(2
coscosh)2,3(1

LL
LLS








 
 

 )coscosh1(2
sincoshsinhcos)3,3(1

LL
LLLLS









 
 

 )coscosh1(2
sinhsin)4,3(1

LL
LLS








 
 

 )coscosh1(2
sincoshsinhcos)1,4(1

LL
LLLLS









 
 

 )coscosh1(2
sinhsin)2,4(1

LL
LLS








 
 

 )coscosh1(2
1coshcossinsinh)3,4(1

LL
LLLLS









 
 

 )coscosh1(2
coscosh)4,4(1

LL
LLS








 
 

 
In a similar fashion, one may produce the following force-arbitrary constants relationship 
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









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
























































s

r

s

r

V
V
M
M

EI
D
C
B
A

LLLL

LLLL 1

sinhcoshsincos
00

coshsinhcossin
00

3333

33

2222

22







 (25) 

or more concisely 
 cc FRSEI )(  (26) 

 
Now our original aim was to write the force column, Fc, in terms of the displacement 

column, Dc. But cc RSEIF )( , from equation (26). Substituting for Rc from equation (23) 
gives 

 cc DSSEIF 1)(   (27) 

Performing the multiplication 1)( SSEI  involved in equation (27) above systematically 
gives a dynamic stiffness matrix for a bimodular Euler-Bernoulli beam. 

 
 1)(  SSEIK b

e  (28) 
 
The resulting elements of this elemental dynamic stiffness matrix are 

   EILLLL
LLLLK b

e 


/)1cos(cosh
sincoshcossinh)1,1(




  

(29) 

   EILLLL
LLK b

e 


/)1cos(cosh
sinhsin)2,1(



  

   EILLLL
LLK b

e 


/)1cos(cosh
sinsinh)3,1(


  

   EILLLL
LLK b

e 


/)1cos(cosh
)cos(cosh)4,1(





 

   EILLLL
LLLLK b

e 


/)1cos(cosh
sincoshcossinh)2,2(





 

   EILLLL
LLK b

e 


/)1cos(cosh
)cos(cosh)3,2(





 

   EILLLL
LLK b

e 


/)1cos(cosh
sinsinh)3,1(



 

   EILLLL
LLLLK b

e 


/)1cos(cosh
)sincoshcossinh()3,3(

2





 

   EILLLL
LLK b

e 

/)1cos(cosh

)sinsinh()4,3(
2





 

   EILLLL
LLLLK b

e 


/)1cos(cosh
)sincoshcossinh()4,4(

2





 

 
Thus, the element stiffness matrix may be written as 
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
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
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
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














s

r

s

r

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

b
e

s

r

s

r

Y
Y

KKKK
KKKK
KKKK
KKKK

V
V
M
M




44434241

34333231

24232221

14131211

 (30) 

 
Numerical Example 3.1 
The two-span beam shown in Fig.(4) is subjected to the external dynamic 
loading tq 25sin  as indicated. We find the internal moments of the beam and the 
maximum normal stresses at the fixed end for the given forcing frequency =120 rad/sec. We 
choose the bimodular ratios Et/Ec= 2, 3, 4, 5, 6 and Et/Ec= 1/2, 1/3, 1/4, 1/5, 1/6 and use the 
same modulus assumption for comparison. Let L1=L2=3m, m1=m2=0.192 kN.sec2/m2, 
E= 7102  kN/m2 and cross section dimensions of mm 4.02.0  .  

Referring to the free body diagram shown in Fig.(4b), the structural dynamic stiffness 
matrix is 

 


















 













ext
C

ext
B

ext
C

ext
B

R
R

KBKB
KBKBKB

M
M

2
22

2
12

2
12

2
22

2
11  (E3.1a) 

 
in which the stiffness coefficients are given by equations (29) and the superscripts represent 
the number of structural member.  

Using the harmonic frequency =120 rad/sec gives the frequency parameter 
 

 ct EE
EI

m  for599.0
2   

Thus,  
797.1L  

Therefore, the stiffness matrix will be as follows 
 

 








































ext
C

ext
B

ext
C

ext
B

R
R

L
EI

L
EI

L
EI

L
EI

M
M

)(898.3)(076.2

)(076.2)(797.7
 (E3.1b) 

 
But for the analysis, the external loading must be transformed to the equivalent end 

moments as F
BM and F

CM which may be calculated as follows:  
According to the governing partial differential equation of motion, 

 ),(),(),(
2

2

4

4

txq
t

txum
x

txuEI 






   

Using the separation of variables and concentrating on the spatial factor of the produced 
general solution, the following ordinary differential equation is obtained 

 
EI

xq
dx
d )(4

4

4

    

But, because the applied loading is uniform, this equation becomes 
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EI
q

dx
d

  4
4

4

 (E3.1c) 

 
The solution of equation above consists of the homogeneous solution h and the particular 

solution p . The particular solution p can be obtained by trying the following polynomial 
equation  

 54321

234 CxCxCxCxCp   (E3.1d) 
Substituting p  into equation (E3.1c) yields 

 
EI
qCxCxCxCCx  )()24( 54321

23444    

Comparing both sides of the above equation gives 

 EI
qCCCCC 454321 ,0


  (E3.1e) 

Thus, the complete solution of equation (E3.1c) is 

 EI
qxDxCxBxAph 4coshsinhcossin


   (E3.1f) 

To obtain fixed end moments, the pinned ends at B and C are set as fixed end supports. 
Substituting the boundary conditions in the equation (E3.1f) above, the arbitrary constants A, 
B, C and D are found to be 

 

 












LL
LLLLLL

EI
qA




 coshcos22
sincoshsinhcossinhsin

4  

(E3.1g) 
 













LL
LLLLLL

EI
qB




 coshcos22
sinhsincoshcoscoshcos1

4  

 












LL
LLLLLL

EI
qC




 coshcos22
sinhsincoshsinsinhcos

4  

 












LL
LLLLLL

EI
qD




 coshcos22
coshcossinhsincoshcos1

4  

 
The fixed-end moments can be calculated by applying the following relationships 

 

 
EI

M
dx
d

EI
M

dx
d F

C

Lx

F
B

x




2

2

0
2

2

and    

 
Using equation (E3.1f) along with the above equations gives F

BM  and F
CM  expressed in 

terms of A, B, C and D as given by equation (E3.1g). Consequently, the fixed-end moments 
are 

 












1coshcos
sinhsincoscosh

)( 2

2

LL
LLLL

L
qLM F

B 



 (E3.1h) 

 F
C

F
B MM   

Accordingly, 
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 
















106.19
106.19

F
C

F
B

M
M

  

 
Substituting into equation (E3.1b) and taking the inverse of the stiffness matrix and 

multiplying by the fixed-end moments gives the rotational displacements at joint B and C, as 
follows 

EI
L

EI
L

R
R

ext
C

ext
B















































37601.4
232069.7
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106.19

149446.007959.0
07959.0298931.0

 (E3.1i) 

The internal moments can be evaluated as follows 

 































































0
197.28
197.28
013.15

)()(
)()(

)(
)(

2221

1211

22

12

4

3

2

1

F
CCB

F
BCB

B

B

MRKBRKB
MRKBRKB

RKB
RKB

M
M
M
M

 (E3.1j) 

and the normal stresses at the fixed end can be calculated as follows 

 











3
2

3
1

3

h
E
Ehb
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(E3.1k) 

   My
EI
E

hEhEb
MyE t

ct

t




 3
2

3
1

3  

Similarly 

 My
EI
E c

c    

Thus, for Et=Ec 

 Mpat 814.2   
and   
 Mpac 814.2   

Taking other bimodular ratios and following the same procedure presented above, results 
of the analysis when the bimodular ratio varies as Et/Ec=1,2, ..., 6 and Et/Ec=1, 1/2, ..., 1/6 are 
obtained. The results are listed in Table(1). Results for rotational displacements, internal 
moments and extreme fibre stresses are maxima of the spatial factors in the complete solution. 
The complete solution is obtained by multiplying those values by the harmonic temporal 
factor tZtY  cossin   the arbitrary constants of which are fixed by initial conditions. 

Figs.(5-19) give pictorial representation for the results in the Table(1) below. Time 
histories, in particular, show the effect of bimodularity on the different responses. It is 
obvious from these figures that changing the bimodular ratio changes the magnitude of the 
response in a pointwise fashion, but the character of the response remain the same. All the 
responses reflect the linearised character of the analysis. In particular, it is easily seen that a 
harmonic forcing produced only harmonic responses for all bimodular ratios. No subharmonic 
or superharmonic responses are seen, which is a peculiarity of linear analysis.  

 
4. CONCLUSION. 
 The originally nonlinear equation, governing the vibrations of bimodular beams was 
linearised by adopting the equations giving the neutral surface position of a beam under pure 
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bending for the general transverse loading case. A symbolic example was solved in which a 
formula for the ratio between successive natural frequencies in the bimodular and the 
unimodular cases was derived. The formula gave the magnitude of error expected in 
estimating natural frequencies if bimodularity was ignored. The elemental dynamic stiffness 
matrix corresponding to the given linearised governing equation was derived. This matrix was 
used to assemble a structural dynamic stiffness matrix for an example continuous beam the 
dynamic responses of which under harmonic load were shown to be significantly affected by 
the modular ratio. The responses remained, however, linear in character as was shown by the 
absence of superharmonic or subharmonic responses for harmonic input. 
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Table(1): Results of analysing the continuous beam of Example 3.1 for different modular 

ratios. 

Ec/Et h1(m) h2(m) 
Flexural 
Stiffness 
(kN.m2) 

Rotational 
Displacements 

(rad) 

Internal Moments 
(kN.m) t 

 (MPa) 
c 

 (MPa) 
310ext

cR

 
310ext

cR  M1 M2 M3 M4 

6 0.115 0.285 7120.6 3.6420 -2.2460 19.38 32.60 -32.60 0 6.259 2.559 

5 0.123 0.277 8148.8 3.0666 -1.8830 18.40 31.64 -31.64 0 5.554 2.501 

4 0.133 0.267 9481.5 2.5428 -1. 5562 17.48 30.74 -30.74 0 4.903 2.461 

3 0.146 0.253 11643.21 2.0023 -1.2212 16.67 29.91 -29.91 0 4.180 2.426 

2 0.165 0.234 14641.41 1.5391 -0.9352 15.87 29.09 -29.09 0 3.576 2.536 

1 0.2 0.2 21333.34 1.0170 -0.6153 15.01 28.19 -28.19 0 2.814 2.814 

1/2 0.234 0.165 29281.03 0.7248 -0.4375 14.53 27.67 -27.67 0 2.322 3.275 

1/3 0.253 0.146 34298.40 0.6135 -0.3696 14.30 27.46 -27.46 0 2.109 3.652 

1/4 0.267 0.133 37927.31 0.5520 -0.3327 14.23 27.36 -27.36 0 1.996 3.992 

1/5 0.277 0.123 40743.6 0.5129 -0.3090 14.20 27.32 -27.32 0 1.930 4.286 

1/6 0.285 0.115 43028.9 0.4836 -0.2912 14.082 27.21 -27.21 0 1.858 4.515 

 

 

 

 

 
 
 

Figure(1): A rectangular bimodular beam. 
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Figure (2): The beam of symbolic example 2.1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (3): Typical deformed beam. 

 

 

 

 

 

 

 

 
Figure (4): A continuous two span beam under dynamic loading. 
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Figure (5): Variation of tension and 
compression region heights with Et/Ec. 

 
Figure (6): Variation of tension and 

compression regions height with Ec/Et. 
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Figure (7): Variation of flexural stiffness with different bimodular ratios. 
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Figure (8): Time histories of rotational displacement at point B for different Et/Ec ratios.. 
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Figure (9): Time histories of rotational 
displacement at point B for different Ec/Et 

ratios. 

 
Figure (10): Time histories of internal moment 

M1 for different Et/Ec ratios. 
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Figure (11): Time histories of internal moment 
M1 for different Ec/Et ratios. 

 
Figure (12): Time histories of internal moment 

M3 for different Et/Ec ratios. 
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Figure (13): Time histories of internal moment 

M3 for different Ec/Et ratios. 

 
Figure (14): Time histories of the extreme-
fibre tension stress for different Et/Ec ratios. 
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Figure (15): Time histories of the extreme-
fibre tension stress for different Ec/Et ratios. 

Figure (16): Time histories of the extreme-
fibre compression stress for different Et/Ec 

ratios. 
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Figure (17): Time histories of the extreme-
fibre compression stress for different Ec/Et 

ratios. 

 
Figure (18): Time histories of the deflection at 

L2/2 for different Et/Ec ratios. 
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  التحلیل الحركي المعاد خطیا للعتبات ثنائیة معامل المرونة
  

  عمر أحمد صالح                                                       ناھض حماد كردي .م                       
  طالب ماجستیر في قسم الھندسة المدنیةقسم الھندسة المدنیة                                                                     

  جامعة الأنبار –كلیة الھندسة  جامعة الأنبار                                              –كلیة الھندسة                     
  .ةــالخلاص
جُعِــلَ . خطیــا للعتبــات ثنائیــة معامــل المرونــة المعرضــة للأحمــال الجانبیــةحــول نعــرض فــي هــذا البحــث تحلــیلا حركیــا       

لَ المعادلـة الحاكمـة المشـتبكة غیـر  موقع محور التعادل غیر معتمد على أحداثیات المكـان و الزمـان بتبنـي فـرض خـاص حـوّ
أصبح موقع محـور التعـادل بعـدها دالـة لهندسـة المقطـع و قیمتـي معامـل المرونـة و . لخطیة الى معادلة خطیة غیر مشتبكةا

أشـــتقت مصـــفوفة الجســـائة الحركیـــة للعضـــو الواحـــد مـــن دوال الشـــكل المضـــبوطة . اســـتخرج بعـــدها بطریقـــة المقطـــع المكـــافئ
یـــت مـــن هـــذه المصـــفوفة المصـــفوفة المنـــاظرة للمنشـــأ بطریقـــة التجمیـــع المحكومـــة بالمعادلـــة التفاضـــلیة الجزئیـــة الحاكمـــة و بن

و حلــت فــي هــذا البحــث أمثلــة رمزیــة و عددیــة لتوضــیح امكانیــة تطبیــق الطریقــة المقترحــة و . المعتــادة فــي تحلیــل المنشــئات
  .  كفائتها

  
انفعال مصـفوفة القسـاوة الدینامیكیـة،التحلیل الدینامیكي،مادة ثنائیـة المعامل،طریقـة المقطـع المكافئ،: الكلمات الرئیسیة
   .برنولي-خطي،عتبة أویلر

 
 


