Anbar Journal for Engineering Sciences

Linearised Dynamic Analysis of Bimodular Beams

Nahidh H. Kurdi Omar A. Saleh
Civil Engineering Department MSec. Civil Engineering Department
College of Engineering — Anbar University College of Engineering — Anbar University

ABSTRACT.

Linearised dynamic analysis of beams subjected to lateral forces and composed of
materials which have different moduli in tension and compression is presented. The position
of the neutral surface was rendered independent of the spatial and temporal coordinates by
introducing a special assumption which reduced the coupled nonlinear problem of the flexure
of such a beam into a linear one. The actual position then became a function of section
geometry and the two elastic moduli and was determined by the equivalent section method.
The elemental dynamic stiffness matrix was derived using the exact displacement shape
functions governed by the governing partial differential equation and the structural stiffness
matrix was assembled according to the usual assembling methodology of structural analysis.
Symbolic and numerical examples were solved to show the applicability and efficacy of the
proposed method.

Key words: dynamic analysis, bimodular material, equivalent section method, dynamic stiffness
matrix, linearization, Euler-Bernoulli beam.

1. INTRODUCTION.

In traditional application of mechanics of materials theories, it is generally assumed that
materials have the same elastic properties in tension and compression, but this is only a
simplification, and is not a refined model for the actual behaviour of engineering materials.
Many studies have indicated that most materials exhibit different tensile and compressive
strains given the same stress applied in tension and compression. Many engineering materials
such as concrete, reinforced concrete, metals, graphite, plastics and cord-rubber display such
bimodular behaviour [1].

Of a special status for this matter are the composite materials, which are receiving
increasing attention in structural applications because of important weight savings. The
weight savings emerge as a result of the combination of a light, weak, and flexible matrix
material with a very strong and stiff reinforcing material in the form of fibres or granules. One
of the mmportant characteristics of composite materials is that they often exhibit different
moduli or stiffnesses under tensile loading than those under compressive loading. Thus, large
errors may arise if the same modulus assumption is still used. Therefore, it has become a new
research trend for many researchers to study the behaviour of structures made of those
materials in different contexts.

The first scholar who described the behaviour of members made of those bimodulus, or
bimodular materials was Timoshenko [2], but this problem was generally forgotten or ignored
up to the beginnings of 1980°s of the twentieth century when the revival of interest came from
many researchers. Yao and Ye [1] reported that the first scholar who founded an elastic theory
of bimodular materials was Ambartsumyan, a Russian scholar. Another researcher, Medri [3],
an American scholar, presented a model for the mechanical characterization of isotropic
materials with different behaviour in tension and compression. Bert and Tran [4] developed a
transfer-matrix method, based on Timoshenko's beam theory for a bimodular beam and
applied the method to transient response problems. Reddy [5] presented a finite element
method for the transient analysis of bimodular, fibre-reinforced, rectangular plates made of
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aramid-rubber and polyester-rubber materials. Rebello et al. [6] studied the vibration of a
thick sandwich beam constructed of bimodular material with rectangular cross section and
presented both analytical and experimental investigations. Benveniste [7] presented a
constitutive theory for transversely isotropic bimodular materials in the framework of large
deformations then derived the special case of infinitesimal strains which he used to solve
some wave propagation problems. Chen and Juang [8] investigated the dynamic stability of
bimodular thick circular and annular plates subjected to a combination of a pure dynamic
bending and a uniform dynamic extensional stress in the plane of the plate. Chen et al. [9]
investigated the dynamic stability of a bimodular beam subjected to a periodic load using the
finite element method. Iwase and Hirashima [10] presented an analytical treatment of the
dynamic behaviour of beams made of bimodular materials under moving load and determined
the natural frequencies and mode shapes of those beams using the transfer matrix method.
The same authors, Iwase and Hirashima [11] treated the problem of bending of beams by
applying Levinson’s beam theory, which include shear deformation and warping of the cross
section, to bending analysis of thick rectangular beams made of bimodular materials. Yao and
Ye [12] presented an analytical solution for the static bending stresses in a bimodular beam
subjected to lateral loading. Another paper of the same authors [13] also contained an
analytical solution for bending-compression of a column subjected to combined loading using
a flowing coordinate system. Baykara et al. [14] presented an analytical solution for the large
horizontal and vertical deflections at the free end of a cantilever beam made of a bimodular
material under an end moment. Yao and Ye [1] introduced different tension and compression
moduli into the analysis of statically indeterminate structures and presented a semi-analytical
method for the analysis of these structures. Yao and Wang [15] found analytical solutions for
bending-compression and bending-tension members with different moduli under complex
stress and subjected to combined loadings. Another paper for Yang and Wang [16] presented
an approach to solve dynamic bimodular problems. They used a smoothing technique to avoid
the constitutive discontinuity which results from considering the stress-strain curve of
bimodular materials as a straight line with a slope discontinuity at the origin. Chen-Zhong
[17] presented an analytical solution for the deflection of a geocell with different tension and
compression moduli and analyzed the factors affecting the solution of geocell's deflection.
Khan et al. [18] investigated the effect of bimodularity on free vibration of all edges simply
supported, two-layered, cross-ply thick plates using Bert's constitutive material model.

The analysis of structures made of bimodular materials is inherently nonlinear and the
exact solutions may not be accessible, especially in dynamic analysis. Therefore, in this study,
the linearised dynamic analysis of the flexure of bimodular beams is presented. The procedure
proposed in this paper is easy to follow, and practical. To fully delineate this procedure, the
dynamic stiffness matrix of a bimodular beam is derived and both symbolic and numerical
examples are solved to show the applicability and efficacy of the proposed method.

2. GOVERNING EQUATION OF MOTION.
The governing partial differential equation of transverse vibration of a one-dimensional
beam of uniform flexural stiftness, £/, under the Euler-Bernoulli kinematical assumptions is

4 2
2 ”(’j’t)quma ”(f’t) = g(x,1) (1)
ox ot

where EI is the uniform flexural stiffness, u(x,?) is the transverse displacement of a point on
the neutral axis of the beam. The position of this point along the axis is fixed by the spatial
coordinate, x. The transverse displacement in a vibration problem is, as evident from the
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notation, a function of both position and time. The parameter, m, is commonly said to be the
mass per unit length of the beam, but should, more precisely, be called the linear mass density
of the beam. The right hand side is the time-varying load.

Variation in section dimensions of the beam, along its axis, introduces only spatial
dependence of the product £/ whether the problem at hand is a static problem or a dynamic
one such as the free or forced transverse vibrations of a beam. Thus for those problems, the
governing equation remains a linear partial differential equation, albeit a variable coefficients
one. This amounts to the modification of equation (1) to take the form [19]

a‘* 0*u(x,1)

— (EI (D u(x,t))+m—"==q(x,t) (2)

Another, rarely-met in practice, situation calls for the modification of equation (2) above to
take spatial variation of the linear mass density into consideration. Equation (2), would then
take the form

o* u( 1)

o B, 0) +mx)— 5= =q(x,1) 3)

For the present problem, however, the position of the neutral surface depends on the
external force distribution which is in turn made up of the externally applied time-varying
loads and the inertia force. The inertia forces are acceleration dependent. Thus the expression

of EI becomes dependent on 0°u/ 0t such that the governing equation becomes of the form

o qu(x t)

5 B (x )u(x )+ m(x)—=—=q(x,1) 4)

Equation (4) above has the appearance of a nonlinear partial differential equation but it is,
in fact, a nonlinear partial integro-differential equation (Kurdi and Saleh, unpublished work).
In this general form, equation (4) is, in all probability, not amenable to solution by separation
of variables or other methods of linear analysis, nor yielding for solution in closed form by
any other method known to the authors. In order to form a picture for the effect of
bimodularity on the dynamic response of beams, linerisation of the governing equation (4)
seems a feasible first approach. The linearisation of equation (4) above is presented below.

The expression EI(x,0%u/0t*) is to be replaced by an approximate substitute by the method

of equivalent sections so as to replace the nonlinear equation (4) by a linear approximate one.
This linearisation will automatically restore the original character of the governing equation,
i.e. being a partial differential equation, not an integrao-differential one.

In order to substantiate this linearisation, the general expression of £/ may be replaced by
the corresponding expression of the particular case of pure bending which turned out to be
independent of the spatial and temporal coordinates [20, 13].

To complete the linearised analysis, the neutral surface position for pure bending loading
case 1s first derived using the equivalent section method.

Referring to Fig.(1), any section of a beam subject to a pure bending loading condition
would be under the action of uniform moment, M. The section height and width are denoted
by 4 and b, respectively. The tensile region height which is the distance down (or up) to the
extreme fibre from the neutral surface is 4;, while the compressive region height is /,. The
tensile modulus is denoted by E' while the compressive modulus is denoted by E. Again,
tensile and compressive areas are referred to as A’ and 4°, respectively.

219



Anbar Journal for Engineering Sciences

The strategy is to convert the compressive area into an equivalent tensile one in the sense
of changing the geometry and adopting the tensile modulus, £, as the unique modulus of the
equivalent section. b,

The compressive stresses acting on the original and equivalent sections are, respectively

c‘=E‘ and o, =E'e, ®)
The pivotal point in what follows is to keep the original and the equivalent section strains
the same in order to preserve compatibility. Another (force) condition is to set N=N,,, the
original and the equivalent compressive force resultants.
These compressive forces, for any stress distribution, is

N = jach = jEcgdA

(6)
N, J' o° dA,, = J' E's, b, dy
where b, , is the equivalent width of the converted section.
Now applying the condition N=N,, and e=¢., gives
EC
by =" ™
First moment around the neutral axis should remain zero.
Thus, bhy(h /12) =b, 1, (h, /2) = (E° / E")bh,(h,/2), which gives
ER: =E'R (8)
Equation (8) above together with A=h;+h, gives
VE* VE'
h, and h, = )

:—’ —h
N =B =

Of course, equations (9) are rigorous only for the pure bending case. However, the main
assumption of the present work is that they could be used as a first order approximation for
the transverse loading case, as was detailed before. By virtue of being independent of the
external moment distribution, equations (9) above could be used to linearise the hitherto
nonlinear problem.

To do so, a new but, also uniform, equivalent flexural stiffness is calculated as follows:

(EDeg=Eeqlegs ot (EI), =E'I, =E'[2h +"2h]. Now, equation (7) is invoked to
write (EI),, = E'[% N +E b@]
Then,
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@Dm:%EM+E%ﬂ (10)

Therefore, instead of solving equation (4) in its full nonlinearity, the remaining of this
paper will be concerned with solving the following linearised form

4 2
TUD 4 T (n

%Eﬁ+ﬂ@]

where /1, and 4, are given by equation (9). In particular, for the free vibration case, equation
(11) takes the following form

4 2
0 u()j,t) +m8 u(x,t) _

b
—[E'R +E°h]
3[ hl 2] at2

0 (12)

) . b . . )
For brevity, the expression E[E’hl3 +E°R;] in equations (11) and (12) above is denoted

byﬁ; the equivalent flexural stiffness. Thus for free vibration of a bimodular Euler-Bernoulli
beam, the linearised governing equation may be written as

A4 2
Ela u()j,t) +m8 u(azc,t) _0 (13)
ox ot

Using the method of separation of variables, the solution will be of the form
u(x,1) =y (x)(t) (14)

Substituting the above expression in equation (13) and performing separation of variables,
the solution will be

v (x)=Asin fx+ Bcosfx+Csinh fx+ Dcoshfx (15a)
¢(t) =Ysinkt+ Zcoskt (15b)
in which
2
4 mK
= 15¢
B = (15¢)

The general solution is

u(x,t)=(Ysinkt+Zcoskt)(Asin fx+ Bcos S x+Csinh S x+ Dcosh f x) (16)

Then for free vibration of a uniform rectangular beam made of bimodular material, the
response is given by

2 2
u(x,t):(YsinKt+Zcosr<t)(Asin41/n§ x+Bcosw4/nE X+
EI EI
mx’ mi’
Csinh4[——x+ Dcoshi|——x)
EI EI
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In order to give an impression of the effect of bimodularity on the dynamic response of
structures, a symbolic example is given below. The comparison of the natural frequencies in
the unimodular and bimodular cases reveals both the extent of the effect of bimodularity and
the efficacy of the proposed linearisation in revealing this effect at relatively low
computational and conceptual costs.

Symbolic Example 2.1

It 1s required to determine natural frequencies and mode shapes for the beam shown in
Fig.(2) below.

For the given problem, the boundary conditions in terms of the transverse displacement
could be written as

ou(0,t) 0 o’u(0,1) _0
MOD g, ZEOD
Ox ] 32“ (E2.1a)
u(L=0, LD _,
ox

Now recalling equation (15a), the above boundary conditions written in terms of u(x,?)
imply another set of boundary conditions written in terms of y(x) as follows

vl Lo Sl
oxl_, ol

axﬁ (E2.1b)
w(L)=0, A -

ax x=L

The first row in equations (E2.1b) above implies

A+C=0
A+ C =0 (E2.1¢)
The second row in equation (E2.1b) above implies
Asin BL + Bcos BL + Csinh BL+ Dcosh L =0 B2 1d
Ap cos BL—BPsin L+ CPcosh BL+ DB sinh L =0 (E2.1d)
where 4, B, C and D are the arbitrary constants appearing in equation (15a).
Equations (E2.1¢) gives 4 = C = 0 . Substituting this into equation (E2.1d) gives
Bcos BL+ Dcosh BL =0

p h (E2.1e)

— BB sin BL + DB sinh L =0

Equations (E2.1e) above could be put in a matrix form as follows

cos AL coshfL | B| |0 _
—BsinBL  BsinhBL|D| |0 (E2.19
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To obtain a non-trivial solution of equation (E2.1f) above, i.e. a vibrating beam, the
determinant of the coefficients matrix in equation (E2.1f) should be set to zero.
cos L cosh L

= E2.1
_BsinfL Bsinh L (E2.I¢)
Equation (E2.1g) is known as the frequency equation. This is equivalent to
B cos BLsinh BL + B sin SLcosh L =0
or
tan fL = —tanh BL (E2.1h)

Equation (E2.1h) is a transcendental equation whose solution cannot be found exactly. An
approximation of this solution could be found by trial and error

3. Ir llx
L~ S E2.1i
PL~=r (E2.11)
or
ﬂLzMﬂ' =123, (E2.1j)

Equation (E2.1j) above is a solution representing an infinity of natural frequencies
corresponding to an infinity of mode shapes. Substituting those values of SL into equation

(15¢) gives

2=E’(4” Dy n=1,2,3-
L
or
(4n 1)( EI n:1:2:3:"'
Then

is an infinity of natural frequencies corresponding to the free vibration of the beam of this
example.

If the beam was a unimodular one, using an exactly parallel analysis, the corresponding set
of natural frequencies is found to be [21, 19]

4n1
=(

Comparing equation E2.1k and E2. ll, the ratio a)f /@, 1is found to be

)( )? n=1,2,3, (E2.11)

L=
® _ |EL (E2.1m)
w EI
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The superscript b in @’ above indicates that the natural frequency was computed assuming

bimodularity of the beam material. The ratio expressed in equation (E2.1m) above could be

substantially simplified as follows: The convention was to choose E=E', then

EI=E', =EI,

or
— b Eb
EI=E'[-W +—=h
[3 h E'3"°
Then
R Ec
El = E(é)(hf + —thj)
Now we writeg—f =m,_, the modular ratio, and remember that/ = W , then

EI _E(b/3)(l +mh h

EL_ BOI3)E +m ) _ [(_) +m,(—>}

EI Eb/12)h h h
Then using equation (9)

EI{\/E_ @3}

\/E \/E) +mr(\/E+\/E)
(AmVE JE

EI ( +1)) +mr(\/E( m,+1))

g omAm om,
oo 1) ()
_4 mr(\/_r+l): m,

| ( mr+l)3 ( mr+l)2

__ 4m
( m, +l)2

Taking limits as m,_ —1 gives

(E2.1n)

(E2.10)

(E2.1p)

Equation (E2.1p) above indicates the exactitude of the present analysis despite adopting
the assumption of using equation (9) for the location of the neutral surface depth of any beam-
column. This is attributable to the fact that axial forces are absent in the present example

leading to an exact linear substitute of the governing equation (4).
Now substituting equation (E2.10) into equation (E2.1m) gives
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@) _ 2m, (E2.1q)
P

Equation (E2.1q) above is quite significant since writing it the other way around;
ie.w, =[(y/m, +1)/(2m, )]@’, means that ignoring bimodularity of this beam leads to

underestimating each natural frequency by the ratio(y/m, +1)/(2\/m. ) that is less than 1

form. >1.

3. ADYNAMIC STIFFNESS MATRIX FOR THE LINEARISED ANALYSIS OF

BIMODULAR BEAMS.

So far, the linear partial differential equations governing forced and free vibration of an
Euler-Bernoulli beam were modified to produce linearised partial differential equations that
govern forced and free vibration of a bimodular Euler-Bernoulli beam. In particular, the free
vibration equation was solved subject to a set of boundary conditions to yield natural
frequencies, mode shapes and response histories for a bimodular beam corresponding to the
given boundary conditions. The effect of bimodularity was already noticeable despite the
linearised character of the analysis.

In this section a modification of the standard Euler-Bernoulli dynamic stiffness matrix is
given. The modification extends the applicability of this method to the linearised analysis of
bimodular beams. In order to start constructing a dynamic stiffness matrix for a bimodular
Euler-Bernoulli member, consideration of a general such member is required. Figure 3
depicts such a member s (i.e. a bimodular Euler-Bernoulli beam extending between points »
and s on a bimodular structure).

End moments M,, M, and end shears V, and V; along with transverse deflections Y; , ¥, and
end rotations 6, and 6, are shown in their positive sense in Fig.(3), above.

This is a typical start for constructing a member stiffness matrix by adopting exact shape
functions derived from the governing differential equation.

The first three spatial derivatives of the function w in (15a) equation are

dt/;(x) = B AcosBx— B Bsin fx+ B Ccoshfx+f Dsinh 8 x
X

2
d;//gx) =—p*A4sin fx— B>Bcos B x + BCsinh Bx+ f>Dcosh Bx (18)
X

d’y(x)
—5 T ~B’Acos Bx+ B’Bsin Bx+ BCcosh fx+ B’ Dsinh B x
x

Referring to Fig.(3), the appropriate boundary conditions to be imposed are;
supposingx|r =0, x|s =0

2
d l/; —% , and av =0,
x| _, EI dx | _,
d3l// y (19a)
=—=L, and y| ,=-Y
’ x=0 r
d|
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It is interesting to note that the first column in equation (19a) contains only force boundary
conditions, while the second contains only displacement boundary conditions.
Similarily, boundary conditions for the other end are

2
d l/; = Ai’ , and v =0,
dx”| _, EI dx|._,
Sy (19b)
=—==, and =Y,
| _,  EI Vet

To build a stiffness relation (the dynamic stiffness matrix in this case) the end forces, M,,
M, V., Vs need to be expressed in terms of the end displacements; 6,, 6, Y, and Y;
respectively. Substituting the appropriate values of x into equations (15a) and (18) and using
equations (19a) and (19b), this expression could be obtained.

Using the fourth of equations (19a) gives

B+D=Y, (20a)
while using the fourth of equation (19b) gives

AsmBL+BcospL+CsinhBL+DcoshBL=Y, (20b)

Using the second row of equations (19a) gives
pA+ pC =6 (20c)
while using the second row of equations (19b) gives
BAcospL—BBsimfBL+LCcoshBL+pBDsinhBL=0, (20d)

Equations (20a, b, ¢ and d) could be cast in the following matrix form

B 0 Jo) 0 A 0.
BeospL —Bsin L BeoshBL  BsinhBL || B | |6,
0 1 0 1 c| |, @D
sin SL cos L sinhBL.  coshfL | D v,
or more concisely
SR: = Dc (22)
inverting S systematically, we obtain
R:=S"D. (23)

Performing the symbolic inversion by hand or by a computer algebra package; like Maple,
we find that
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=57 (24)

where
—sinh B Lsin B L —cosf Lcoshf L

2B (1—-coshpLcosBL)
cosffL—coshfL
2 (—coshfB LcosBL)
cosf LsinhfL+coshf Lsinf L
2(1—-coshf LcosB L)
S, 4) = sin B L+sinh L
2(1-coshf LcosB L)
coshfB Lsin S L —sinh B Lcosf L
2 (1—coshp LcosBL)
$71(2.2) = sinhfL—sinf L
2B (1—coshp LcosBL)
coshf LcospL—sinhfLsinBL—-1
2(1-coshpB LcosB L)
S(2.4) = cosffL—coshf L
2(1-coshpB LcosBL)
I+sinh B Lsin BL—cosf Lcoshf L
2B (1—coshf LcosBL)
coshffL—cosfL
2 (1 —coshf LcosBL)
—cosf LsinhfL—coshfLsinfL
2(1—coshpB LcosB L)
—sinBL—sinh L
2(1-coshpB LcosB L)
cosf Lsinh S L —coshf Lsinf L
2B (1 —coshf LcosBL)
sin L —sinh L
2B (1—coshp LcosBL)
sinh S Lsin BL—cosf LcoshfL—1
2(1—coshpB LcosB L)
coshffL—cosf L
2(1—coshpB LcosBL)

S"(l,l):l

§71,2) =

S71,3) =

S22, =

5712,3) =

S7@3,1) =

S73,2) =

S7'3,3)=

S7(3,4) =

S'4,1)=

S7'4,2)=

S7(4,3) =

S7(4,4)=

In a similar fashion, one may produce the following force-arbitrary constants relationship

227



Anbar Journal for Engineering Sciences

0 B’ 0 B’ A -M,
~p*sinfL —p*cospL p*sinhBL p*coshpL| B |_ 1| M, 25)
- B 0 B 0 C| EI-V.
—B’cosBL  B’sinBL  B’coshpL B’sinhBL | D —V,
or more concisely
(ENSR. = F, (26)

Now our original aim was to write the force column, F,, in terms of the displacement
column, D.. ButF, =(E)§Rc, from equation (26). Substituting for R. from equation (23)
gives

F, =(EDSS™'D, 27)

Performing the multiplication (5)331 involved in equation (27) above systematically

gives a dynamic stiffness matrix for a bimodular Euler-Bernoulli beam.

K" =(E)SS™ (28)

The resulting elements of this elemental dynamic stiffness matrix are
sinhfBLcosfBL—coshf Lsinf L

K LD= [(coshBLcosBL-1)L]/ BLEI
K'(1.2) = sin L +sinh B L _
o [(coshp LcosBL—1)L]/ BLEI
K'(1.3)= Psinh fLsin L _
7" [(coshp Lcos L —1)L)/ BLEI
K'(1.4) = P(coshfL—cosfL) _
o [(coshLcosBL—1)L]/ BLEI
K'(2.2) = sinhﬂLcosﬂL—coshﬂLsinﬁL
o [(coshB LcosBL—-1)L]/ BLEI
K'(2.3) = B(coshf L—cosfL) _ (29)
77 |(coshBLcosp L—1)L]/ BLEI
K'(1,3)= Psinh fLsin L

[(coshB LcosBL-1)L]/ BLEI
—sinh B LcosBL—coshf LsinB L)
[(coshﬂ LcospL— 1)L]/[3LE_I
K'(3.4) = B’ (~sinh BL—sin B L) _
o [(cosh LcosBL—1)L]/ BLEI
—sinh B LcosfB L —coshB Lsin L)
[(coshﬂ Lcosp L— l)L]/ﬂLE_I

Kf(3,3):ﬂ2(

Kf(4,4):ﬂ2(

Thus, the element stiffness matrix may be written as
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o
o
o
g
)

~
®
®
)
®
w
®
=
~

(30)

o

o

ol

o
NNLD

Numerical Example 3.1
The two-span beam shown in Fig.(4) is subjected to the external dynamic
loading ¢ = 25sin wt as indicated. We find the internal moments of the beam and the
maximum normal stresses at the fixed end for the given forcing frequency =120 rad/sec. We
choose the bimodular ratios E/E‘= 2, 3, 4, 5, 6 and E/E=1/2, 1/3, 1/4, 1/5, 1/6 and use the
same modulus assumption for comparison. Let L=L,=3m, m;=m;=0.192 kN.sec’/m’,
E=2x10" kN/m” and cross section dimensions of 0.2m x 0.4m .

Referring to the free body diagram shown in Fig.(4b), the structural dynamic stiffness

matrix is
M KB’ +KB;, KB’ | R, (E3.1)
= .1a
M KB, KB, | R

in which the stiffness coefficients are given by equations (29) and the superscripts represent
the number of structural member.
Using the harmonic frequency =120 rad/sec gives the frequency parameter

2

/ =0.599 for E' = E¢

B

Thus,
BL =1.797

Therefore, the stiffness matrix will be as follows

e 7797¢ELy 2.076(EL) Re
[ b }— L L [ B} (E3.1b)

M 2.076(%) 3.898(%)

But for the analysis, the external loading must be transformed to the equivalent end
moments as M, and M which may be calculated as follows:
According to the governing partial differential equation of motion,
o*u(x t) qu(x 1
EI : =q(x,t
ox* o’ 4050
Using the separation of variables and concentrating on the spatial factor of the produced
general solution, the following ordinary differential equation is obtained
_49()
Py EI
But, because the applied loading is unlform, this equation becomes
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4
YV _ g, -9 (E3.1c)
X

The solution of equation above consists of the homogeneous solution y , and the particular
solution y , . The particular solution y , can be obtained by trying the following polynomial
equation

y,=Cx"'+Cx’+Cx*+C,x+C, (E3.1d)
Substituting y , into equation (E3.1c) yields

(24 — B*xC, - BHC,X* +Cx>+Cx+C,) =L

Comparing both sides of the above equation gives .
clzczzczzqzo,csz—ﬁfﬂ (E3.1¢)
Thus, the complete solution of equation (E3.1c¢) is
w =y,+y = Asin Bx+ Bcos fx+ Csinh Bx + D cosh Bx - ﬁ“qEI (E3.19)

To obtain fixed end moments, the pinned ends at B and C are set as fixed end supports.
Substituting the boundary conditions in the equation (E3.1f) above, the arbitrary constants A4,
B, Cand D are found to be

4o 4 [ sin BL + sinh BL —cos PLsinh BL —cosh BLsin SL
EIB*| 2 —2cos BLcosh BL
g._4 1+ cos BL —cosh BL —cos BLcosh BL +sin BLsinh SL
EIB*| 2 —2cos BLcosh BL (E3.1p)
o 4 [ cos BLsinh BL +sin BL cosh BL —sin BL —sinh BL 8
EIB*| 2 —2cos BLcosh BL

g | 1-cos BLcosh BL —sm BLsinh BL —cos BL +cosh SL
EIB* 2 —2cos BLcosh BL

The fixed-end moments can be calculated by applying the following relationships

M
EI

d*y
dx*

ME 2
EI dx

x=0 x=L

Using equation (E3.1f) along with the above equations gives M) and M/ expressed in

terms of A, B, C and D as given by equation (E3.1g). Consequently, the fixed-end moments
are

*(BLY cosSLcosh BL —1 (E3.1h)

ME=—mF

M- ql’ {coshﬂL —cos L —sin SLsinh ,BL}

Accordingly,
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M | —19.106
ME| | 19.106
Substituting into equation (E3.1b) and taking the inverse of the stiffness matrix and

multiplying by the fixed-end moments gives the rotational displacements at joint B and C, as
follows

R B 0.298931 -0.07959| [, | —19.106 B 7.232069 | L E3.1i
Re| | -0.07959 0.149446 |EI|+19.106] |—4.37601] EI (5310
The internal moments can be evaluated as follows
M, KB, (Ry) [ 15.013
M, KB, (Ry) 28.197 ,
= ; (E3.1j)
M, KB, (Ry)+ KB,(R.)+M, || —28.197
M, _Kle(RB)"'KBzz(RC)"'Mg__ 0
and the normal stresses at the fixed end can be calculated as follows
Gt = ? = —3]\2}5
b(hf +— hj]
E (E3.1k)
3E'M E'
= 113 y’ 3 =—My
biE h +Eh; ’ EI
Similarly
Ec
o =—M
EI Y
Thus, for E'=E°
o' =2.814Mpa
and
o =2.814Mpa

Taking other bimodular ratios and following the same procedure presented above, results
of the analysis when the bimodular ratio varies as E/E=1,2, ..., 6 and E/E=1, 1/2, ..., 1/6 are
obtained. The results are listed in Table(1). Results for rotational displacements, internal
moments and extreme fibre stresses are maxima of the spatial factors in the complete solution.
The complete solution is obtained by multiplying those values by the harmonic temporal
factor Y'sinkt+ Zcoskt the arbitrary constants of which are fixed by initial conditions.

Figs.(5-19) give pictorial representation for the results in the Table(1) below. Time
histories, in particular, show the effect of bimodularity on the different responses. It is
obvious from these figures that changing the bimodular ratio changes the magnitude of the
response in a pointwise fashion, but the character of the response remain the same. All the
responses reflect the linearised character of the analysis. In particular, it is easily seen that a
harmonic forcing produced only harmonic responses for all bimodular ratios. No subharmonic
or superharmonic responses are seen, which is a peculiarity of linear analysis.

4. CONCLUSION.

The originally nonlinear equation, governing the vibrations of bimodular beams was
linearised by adopting the equations giving the neutral surface position of a beam under pure
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bending for the general transverse loading case. A symbolic example was solved in which a
formula for the ratio between successive natural frequencies in the bimodular and the
unimodular cases was derived. The formula gave the magnitude of error expected in
estimating natural frequencies if bimodularity was ignored. The elemental dynamic stiffness
matrix corresponding to the given linearised governing equation was derived. This matrix was
used to assemble a structural dynamic stiffness matrix for an example continuous beam the
dynamic responses of which under harmonic load were shown to be significantly affected by
the modular ratio. The responses remained, however, linear in character as was shown by the
absence of superharmonic or subharmonic responses for harmonic input.
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Table(1): Results of analysing the continuous beam of Example 3.1 for different modular

ratios.
Floxural Dil;{;))lt;gg;;l::‘rll ts Internell(lN Moments
EYJE' h(m)  hy(m) Stiffness (rad) [ty o o
(kN. mz) (MPa) (MPa)
fot x10~3 Rgx’x10‘3 I I ¥ W
6 0.115 0.285 7120.6 3.6420  -2.2460 19.38 3260 -32.60 O 6.259  2.559
5 0.123 0.277 8148.8 3.0666  -1.8830 18.40 31.64 -31.64 0 5554 2501
4 0.133 0.267 9481.5 2.5428  -1.5562  17.48 30.74 -30.74 0 4903 2.461
3 0.146 0.253 11643.21  2.0023 -1.2212 16.67 2991 -2991 0 4.180 2.426
2 0.165 0.234 1464141 1.5391 -0.9352 15.87 29.09 -29.09 0 3.576 2.536
1 0.2 0.2 2133334 1.0170  -0.6153 15.01 28.19 -28.19 0 2.814 2814
1/2 0.234 0.165  29281.03 0.7248  -0.4375 14.53 27.67 -27.67 0 2322 3.275
1/3 0.253 0.146  34298.40 0.6135 -0.3696 1430 2746 -2746 0 2.109 3.652
1/4 0.267 0.133 3792731 0.5520  -0.3327 14.23 2736 2736 0 1996 3.992
1/5 0.277 0.123 40743.6  0.5129  -0.3090 1420 27.32 -27.32 0 1930 4.286
1/6 0.285 0.115 430289  0.4836  -0.2912 14.082 2721 -2721 0 1.858 4.515

y h E / h
Y Y y

[e—>|

Figure(1): A rectangular bimodular beam. b
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Figure (2): The beam of symbolic example 2.1.

(b): End forces.

Figure (3): Typical deformed beam.

q = 25sinwt
7 B N~ A yul AN
A4 C A (\ /J (\ /}
9 / 9
7 I L, - 2 3 4
1
(a). The given beam (b). Internal actions

Figure (4): A continuous two span beam under dynamic loading.
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Figure (7): Variation of flexural stiffness with different bimodular ratios.
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Figure (8): Time histories of rotational displacement at point B for different E"/E° ratios..
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