Evaluation and Improvement of Traffic Operation for Al-

Zeoat Intersection in Al-Ramadi City

Hamid A. Awad Lecture College of Engineering, Al-Anbar University. Received on :15/3/2010 Hameed A. Mohammed Assist Lecture College of Engineering, Al-Anbar University. Wasan M. Mahmood Assist Lecture College of Engineering, Al-Anbar University. Accepted on : 8/12/2010

Abstract.

The increase in traffic volumes at intersections is one of the important problems that makes difficulties in the traffic movement then leads to traffic congestion in these facilities.

The objective of the present study is improvement the traffic operation of the selected intersection (Al-Zeoat intersection) in Al-Ramadi city by analysis and evaluation this intersection and using accepted solutions to improve the traffic operation of Al-Zeoat intersection under local exist conditions and present a best proposal to enhance the performance at the intersection.

To achieve these objectives, the traffic volumes data collection and geometric layout for Al-Zeoat intersection that required for the traffic and geometrical analysis were gathered manually, while SIDRA traffic program is used for the requirements of traffic analysis process.

Keywords: Traffic Operation, Capacity, Level of Service (LOS), Delay, Signalized intersection.

1. Introduction.

Traffic congestion is a major problem in cities of all sizes. It's a condition on any intersection as use increases and is characterized by slower speeds, longer trip times, and increased queuing [1].

Intersection is one of the most complex locations in a traffic system; intersection analysis must consider a wide variety of prevailing conditions, including the amount and distribution of traffic movement, traffic composition, geometric characteristics and the details of intersection [2].

The concept of capacity, level of service and delay are central to the analysis of intersections, as they are for all types of facilities, therefore that both capacity and level of service must be fully considered to evaluate the overall traffic operation of the intersections [3]. While The delay is one of problems that occur in any facility of traffic.

Al-Zeoat intersection in AL-Ramadi city is an important congested intersection due to its critical location on major streets. This intersection has the following characteristics

- 1. It has a very high traffic volume in two approaches.
- 2. It is located on Major Street which intersect with two minor streets.
- 3. Many activities are located around this intersection.

Form Existing condition, it is obvious that this intersection work under or close to saturated condition. To solve the problem at Al-Zeoat intersection, a flyover must be adopted to reduce the number of vehicles at ground level and increase the capacity of intersection.

2. Study Area.

Al-Zeoat intersection is a congested intersection located in the centre of Al-Ramadi city. Al-Zeoat intersection is consist from four major street:

- 1. Al-Mohafadha Street.
- 2. Al-Mahkama Street.
- 3. 17-July Street.
- 4. Al-Mearadh Street.

Al-Zeoat intersection is a significant locations and highly traffic volume can be related to: 1. Al-Zeoat intersection located in an important location. It connects between main directions from Al-Mohafadha Street toward Al-Mahkama Street.

2. The existing of different public activities near Al-Zeoat intersection. These activities results a high traffic volume and lead to create a high delay especially at peak hour.

For this study, the area of improvement includes the intersection with its approaches. **Fig. (1)** shows a satellite image for Al-Zeoat intersection and the boundary of the study area (Google Earth 19 April 2004).

3. Objectives Of The Study.

The main objectives of this study are:

- 1. Specify the peak hour volume at Al-Zeoat intersection and the distribution of traffic volume at peak hour.
- 2. Calculate the peak hour factor (PHF) for all approaches at Al-Zeoat intersection.
- 3. Evaluate the existing level of service (LOS) at the intersection under study.
- 4. Evaluate all proposals, which can be solved the problem of congestion at Al-Zeoat intersection and calculated the level of service for each proposal.
- 5. Select the best proposal that solving the congestion problem and providing a good performance within the design period.

4. Data Collection.

4.1 Traffic volume.

Estimate the traffic volume at the intersection, by counting the hourly traffic volume at Al-Zeoat intersection from (7:30 a.m up to 5:00 p.m) the workday of the week from (10 April to 20 April) 2008. This survey aims to find the peak hour volume, which represent the design hourly volume.

The type of vehicles are classified into two types, they are:

- Passenger car: all vehicles, which have four tires only.
- Heavy vehicles: all vehicles, which have more than four tires.

The heavy vehicles were converted to passenger car by using a passenger car factor equal to (2.0).

The volume for peak hour represents the design hour volume, which will be used in the analysis of this study. **table (1)** shows the traffic account at Al-Zeoat intersection for (15) min period form 7:30 a.m up to 5:00 p.m while **table (2)** shows the total volume for all approaches each (15) min.

4.2 Saturation flow.

To calculate the saturation flow at stop line for Al-Zeoat intersection, Webster method was used for this purpose because there are many problems in site which has an effect on saturation flow. **table (3)** shows the calculated saturation flow at stop line for all approaches at Al-Zeoat intersection.

4.3 Existing geometric design.

The evaluating of existing level of service needs to specify the number of lanes in addition to the direction of each movement. **Fig. (2)** shows Existing geometric layout for Al-Zeoat intersection.

5. Analysis And Results.

5.1 Peak hour volume.

By using Excel program, the traffic account shown in **table** (1) was analyzed to specify the peak hour. Form site investigation and traffic account, the following conclusions were observed:

- a. It was found that the peak hour is limited between 3:00 PM and 4:00 PM. The total volume during this hour is (4665) pc/h.
- b. The maximum traffic volume is concentrated in the approach coming from the Al-MohafadhaSt.; this volume is (1406) pc/h. while the lowest volume is (928) pc/h which coming from Al-Maeradh St..
- c. The percentage of heavy vehicles is concentrated in two approaches as shown in table(4).
- d. Fig. (3) shows all turning movements for all approaches.
- e. The variation of traffic volume for each approach is shown in **Fig. (4)** for 15 min interval while **Fig. (5)** shows the total volume at intersection for each (15) min.

5.2 Peak hour factor.

The peak hour factor gives an indication about the variation of traffic volume during peak hour. From **table (1)**, the PHF was calculated according to American Highway Specifications. **table (5)** shows PHF values for all approaches.

5.3 Existing los at al-zeoat intersection.

Before study any proposal at Al-Zeoat intersection, it is very important to specify the existing level of service (LOS) at base year. By using SIDRA program, it was found that the existing level of service Al-Zeoat intersection is LOS (F) as shown in Table (6), while **table(7)** shows some significant indicators about level of service at Al-Zeoat intersection.

6. Design Proposal.

From traffic volume shown in **table** (1), it seems that the major flow concentrated along the (Al-MohafadhaSt.— Al-Mahkama St.) approach. In addition to that, the other approach (17-July St.— Al-Maeradh St.) approaches is not along a straight line. For these reasons, there is only one proposal. This proposal include executing flyover along (Al-MohafadhaSt.— Al-Mahkama St.) approach. By adopting this proposal, the expected traffic volume at peak hour which will use the flyover will be as follows:

- About 900 pc/h from Al-MohafadhaSt. toward Al-Mahkama St.
- About 1000 pc/h from Al-Mahkama St. toward Al-MohafadhaSt.

With existing of a flyover along (Al-MohafadhaSt.— Al-Mahkama St.), the expected traffic volume at ground level will be as shown in **Fig.** (6). By adopting this proposal, the expected average delay at base year is (34.1) sec/veh. This delay will make the intersection work under level of service (C). **tables (8** and 9) show the level of service and some significant indicators about the efficiency of this proposal.

The expected average delay will be (59.40) sec/veh. The level of service will be LOS (E) as shown in **table (10**). While **table (11)** shows some significant indicators about the efficiency of proposal (1).

7. Design Of Flyover At Target Year.

• Direction from Al-MohafadhaSt. toward Al-Mahkama St. SF = 1000*1.8 =1800 pc/h Assume LOS (D) v/c = 0.80 $f_{HV} = 1.0$ $f_w = 0.93$ (use standard lane with 1 ft obstruction on both sides) N = (1800 / (1900 * 0.8 * 0.93 * 1.0 * 1.0)) = 1.27 lanes So use two lanes with standing lane.

• Direction from Al-Mahkama St. toward Al-MohafadhaSt. SF = 900*1.8 =1620 pc/h Assume LOS (D) v/c = 0.80 $f_{HV} = 1.0$ $f_w = 0.93$ N = (1620 / (1900 * 0.8 * 0.93 * 1.0 * 1.0)) = 1.14 lanes So use two lanes with standing lane

8. Conclusions.

It has been concluded that, fly over at the main path of traffic movement at Al-Zeoat intersection (Al-Mohafadha St. –Al-Mahkama St.) is the best proposal to improve the capacity and traffic operation in Al-Zeoat intersection.

By considering the previous mentioned results, it is concluded that proposed geometric shown in **Fig. (6)** reflects the accepted solution on the target year from the capacity and the performance operation point of view at Al-Zeoat intersection.

References.

- [1]. "Improving Traffic Signal Operations", U.S. Department of Transportation, Federal Highway Administration, 1995.
- [2]. Charles W. and Webster f. V. (1958) ," Some Factors affecting the Capacity of Intersection Controlled by Traffic signals "Forth Int. Traffic engineering Conference ,Copenhagen.
- [3]. Darma Y., Karim M. R., Mohamad J. and Abdullah S. "Control Delay Variability at Signalized Intersection Based on HCM Method", Proceedings of the Eastern Asia Society for Transportation Studies, Vol. 5, pp. 945 - 958, 2005
- [4]. Akcelik R.(1986). " SIDRA version 2.2 input and out put" Austrian road research board . Technical manual ,ATM No. 19.
- [5]. Akcelick ,R. ,(2000) ," aaSIDRA user guide " , Akcelick and Associates pty Ltd.

Direction		From			From			From			From	
	Al-M	lohafad	haSt.	Al-N	Iahkam	na St.	17	July S	St.	Al-N	Aaerad	h St.
Time	R 1	TH 2	L 3	R 4	TH 5	L 6	R 7	TH 8	L 9	R 10	TH 11	L 12
7:30 - 7:45	14	100	44	7	104	31	5	93	16	13	47	24
7:45 - 8:00	15	109	49	8	113	33	6	107	18	16	55	29
8:00 - 8:15	16	117	54	11	128	36	6	118	23	20	62	31
8:15 - 8:30	14	124	52	10	125	38	7	126	20	23	65	38
8:30 - 8:45	17	133	55	13	142	35	8	131	22	19	72	34
8:45 - 9:00	18	125	53	9	151	38	8	125	24	20	74	41
9:00 - 9:15	20	149	57	11	162	43	7	144	28	23	82	45
9:15 - 9:30	19	136	52	10	158	42	9	143	27	22	81	44
9:30 - 9:45	23	147	57	10	163	44	99	157	29	24	87	48
9:45 - 10:00	27	149	55	12	180	48	10	163	30	25	91	50
10:00-10:15	25	150	49	10	173	45	6	160	26	22	96	46
10:15-10:30	20	148	61	13	187	43	8	155	23	27	92	44
10:30-10:45	19	155	55	13	175	47	8	164	29	25	97	41
10:45-11:00	20	157	56	12	179	50	9	153	31	28	94	49
11:00-11:15	16	152	49	16	184	51	11	148	29	24	97	48
11:15-11:30	17	160	52	13	187	47	13	143	25	23	104	47
11:30-11:45	20	150	59	12	183	48	12	145	32	29	100	52
11:45-12:00	21	155	56	12	192	47	12	139	24	25	102	56
12:00-12:15	25	168	65	14	193	52	11	141	27	28	99	54
12:15-12:30	29	160	61	14	189	51	12	145	28	29	107	58
12:30-12:45	27	180	69	15	212	56	13	134	26	31	114	62
12:45-1:00	28	185	71	17	205	55	13	140	27	29	106	57
1:00 - 1:15	22	188	74	11	192	47	9	186	29	28	108	56
1:15 - 1:30	20	209	73	14	208	49	10	179	30	26	107	51
1:30 - 1:45	23	202	77	13	203	44	9	173	31	31	106	53
1:45 - 2:00	25	208	79	14	195	46	8	184	28	32	110	60
2:00 - 2:15	24	210	83	12	217	49	11	189	33	34	116	59
2:15 - 2:30	21	217	77	14	212	52	12	179	29	30	112	56
2:30 - 2:45	25	221	82	13	222	49	14	183	26	29	120	62
2:45 - 3:00	22	212	79	13	227	53	12	190	28	31	115	68
3:00 - 3:15	34	221	85	15	244	62	11	197	37	34	126	69
3:15 - 3:30	38	233	90	17	254	68	12	210	40	36	132	73
3:30 - 3:45	35	229	88	18	261	73	11	201	38	34	124	68
3:45 - 4:00	34	230	89	17	246	65	10	189	35	35	127	70
4:00 - 4:15	28	218	81	14	219	55	9	175	28	29	110	53
4:15 - 4:30	23	185	76	11	203	46	8	159	26	25	104	42
4:30 - 4:45	19	167	71	13	184	42	8	142	23	23	101	40
4:45 - 5:00	18	150	59	9	168	31	7	131	24	23	92	35

Table (1): Traffic volume at Al-Zeoat intersection form 7:30 a.m to 5:00 p.m for all approaches in pcu

Time	Volume	Time	Volume
7:30 - 7:45	498	12:15 - 12:30	878
7:45 - 8:00	558	12:30-12:45	969
8:00 - 8:15	622	12:45 - 1:00	933
8:15 - 8:30	642	1:00 - 1:15	950
8:30 - 8:45	681	1:15 - 1:30	976
8:45 - 9:00	688	1:30 - 1:45	967
9:00 - 9:15	771	1:45 - 2:00	991
9:15-9:30	743	2:00 - 2:15	1037
9:30 - 9:45	798	2:15 - 2:30	1011
9:45 - 10:00	840	2:30 - 2:45	1046
10:00 - 10:15	808	2:45 - 3:00	1050
10:15 - 10:30	821	3:00 - 3:15	1135
10:30 - 10:45	828	3:15 - 3:30	1203
10:45 - 11:00	838	3:30 - 3:45	1180
11:00 - 11:15	828	3:45 - 4:00	1147
11:15 - 11:30	831	4:00-4:15	1019
11:30 - 11:45	849	4:15 - 4:30	908
11:45 - 12:00	841	4:30 - 4:45	833
12:00 - 12:15	877	4:45 - 5:00	747

Table (2): Traffic volume at Al-Zeoat intersection form 7:30 a.m to 5:00 p.m for all approaches for each (15) min

Table (3): Calculated saturation flow at Al-Zeoat intersection

Direction	Saturation flow pc/h
From Al-MohafadhaSt.	1700
From 17-July St.	1550
From Al-Mahkama St.	1675
From Al-Maeradh St.	1650

Table (4): Percentage of heavy vehicles for all approaches at Al-Zeoat intersection

Approach	% heavy vehicles
From Al-MohafadhaSt.	10.7
From 17-July St.	3.2
From Al-Mahkama St.	9.6
From Al-Maeradh St.	4.5

Table (5): PHF values for Al-Zeoat approaches

Approach	PHF
From Al-MohafadhaSt.	0.97
From 17-July St.	0.96
From Al-Mahkama St.	0.95
From Al-Maeradh St.	0.95

Table (6): Existing level of service at Al-Zeoat intersection

Approach	Average delay sec/veh	Degree of saturation	Level of service
From Al-MohafadhaSt.	84.70	0.932	F
From 17-July St.	94.20	0.939	F
From Al-Mahkama St.	85.60	0.930	F
From Al-Maeradh St.	75.80	0.909	Е
Average	84.70		F

Table (7): Some significant indicators about level of service at Al-Zeoat intersection

Indicator	Value
Average delay (sec/veh)	84.70
Total delay (veh.h/h)	109.57
Stop rate	1.19
Performance index	424.12
Practical spare capacity	-4%

Table (8): Expected level of service (LOS) at Al-Zeoat intersection at base year with proposal (1)

Approach	Average delay sec/veh	Degree of saturation	Level of service
From Al-MohafadhaSt.	38.70	0.547	D
From 17-July St.	28.5	0.587	С
From Al-Mahkama St.	42.4	0.593	D
From Al-Maeradh St.	33.1	0.601	C
Average	34.1		C

Table (9): Some significant indicators about the (LOS) at Al-Zeoat intersection at base year with proposal (1)

Indicator	Value
Average delay (sec/veh)	34.1
Total delay (veh.h/h)	27.87
Stop rate	0.80
Performance index	162.2
Practical spare capacity	50%

Table (10): Expected LOS Al-Zeoat intersection at target year with adopting proposal(1)

Approach	Average delay sec/veh	Degree of saturation	Level of service
From Al-MohafadhaSt.	71.0	0.872	Е
From 17-July St.	53.4	0.87	D
From Al-Mahkama St.	68.9	0.83	Е
From Al-Maeradh St.	54.1	0.876	D
Average	59.4		Е

Table (11): Some significant indicators about the (LOS) at Al-Zeoat intersection at target year with proposal (1)

Indicator	Value
Average delay (sec/veh)	59.4
Total delay (veh.h/h)	87.54
Stop rate	1.0
Performance index	403.08
Practical spare capacity	3%

Figure (1): Satellite Image for Al-Zeoat Intersection in Al-Ramadi City (Google Earth 19 April 2004).

Figure (2): Existing geometric layout for Al-Zeoat intersection.

Figure (3): Turning movements for all approaches in Al-Zeoat intersection.

Figure (5): Total traffic volume at Al-Zeoat intersection for each (15) min.

Figure (6): Proposal for Al-Zeoat intersection.

تقييم وتطوير الانسيابية المرورية لتقاطع الزيوت في مدينة الرمادي

وسن مهدي محمود	حميد اسود محمد	حامد احمد عواد
مدرس مساعد	مدرس مساعد	مدرس
كلية الهندسة	كلية الهندسة	كلية الهندسة
جامعة الانبار	جامعة الانبار	جامعة الانبار

الخلاصة

تعد الزيادة في الحجوم المرورية في التقاطعات إحدى المشاكلِ المهمة التي تَجعل حركةَ المرور في هذه التقاطعاتِ صعبة والتي تؤدي إلى الازدحام في هذه المناطق.

إن هدف هذه الدراسة هو تحسين الخدمة المرورية في نقاطع مروري محدد (نقاطع الزيوت) في مدينة الرمادي و ذلك بواسطة تحليل وتقييم هذا التقاطع واستخدام الحلول المقبولة لتحسين الخدمة المرورية في نقاطع الزيوت تحت الظروف الحالية وتقيم أفضل مقترح لتعزيز الأداء في التقاطع.

لإنجاز هذه الأهداف، جمع بيانات الحجوم المروريةَ والتخطيطَ الهندسي لتقاطع الزيوت المطلوبة لغرض التحليل المروري والهندسي للتقاطع تم جمعها يدويا ، بينما برنامج المرور SIDRA استخدم لمتطلبات التحليل المروري.