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Abstract. 
 The feasibility of using an Artificial Neural Network (ANN) for controlling 
time- varying dynamical system is presented. The direct adjusting of neural controller 
by direct adaptive control (DAC) is available, by using the error between output of 
plant and desired input. The finite recurrent back propagation (FRBP) is used in the 
learning process, because the ability of this method to capture the nonlinearly and 
overcome the problem of time varying system. Hybrid controller structure used in this 
paper, where the parameters of classical controller are adjusted with time at specified 
freezing points for time varying dynamical system, and summed the outputs of two 
controllers and enter to the plant, identify of system by ANN to get the optimal initial 
condition for neuro controller. 
 A single channel for Spacecraft model is used as an example in this paper, 
satisfactory results are obtained, which explain the ability of recurrent neural network 
(RNN) to identify time varying dynamical system and overcome for all its problem 
and explain the ability of this structure of hybrid neuro controller to use with time 
varying dynamical system. 
Keyword. Finite recurrent backpropagation network(FRBN), time varying 
system, direct neural model reference adaptive system (DNMRAS). 
 
1- Introduction. 
          Model Reference Adaptive Systems or MRAS have been adopted by many 
researchers in controlling nonlinear plants. Such approach only requires the input and 
output measurements of the system and is, thus, congruous for plants where 
mathematical models are unavailable or difficult to obtain. In addition to this 
advantage, the stability of the system is somehow assured through the convergence of 
both the states and parameters of the plant and the reference model In direct MRAS, 
the controller parameters are directly adjusted to reduce some norm of the output error 
between the plant output and the desired reference trajectory. 
          Neural Network systems, on the other hand, are highly compelling for 
controlling nonlinear dynamic systems with unknown parameters. The integration of 
neural methods effectuates an excellent learning and flexible knowledge 
representational capability. The data driven neuro systems meliorate heuristic 
procedures or expert knowledge in designing the neuro control rules which has been a 
drawback in conventional neural systems. On the other hand, neural network is 
suitable to be used in solving nonlinear identification and control problems involving 
complex plants especially when forming a mathematical model of the system is 
tedious or not possible. Employs. The backpropagation algorithm is used for learning 
the parameter identification which provide the consequent part of the rules [1]. 
          In this paper, a direct Neural Model Reference Adaptive Controller (NMRAC) 
is proposed  for nonlinear systems with unknown parameters.. The control strategy 
used to define the adaptation law is based on the tracking error between the actual 
plant output and target output, which  is the  direct  reference signal. Then, tuning of 
the  parameters of  neural  
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network is based on the standard delta rule or steepest descent algorithm to minimize 
the tracking error. This algorithm is preferred since the weights update is governed by 
the first derivative of the error, and thus produces faster rate of convergence, 
consistent training and not getting stuck in local minima. The system structure 
identification mechanism that includes the  technique for input data partitioning, 
automatic generation of rules and tuning of its parameters based on observed input-
output data of a reference signal, then using an artificial neural network as an adaptive 
direct hybrid controller to control a simple time varying dynamical system. Four 
different learning architectures based on the neural network approach have been 
proposed by Psaltis et. al [2] and G.W. Irwin [3]: they are indirect learning, general 
leaning, direct learning and specialized learning architectures. Fig. (1) represents 
direct adaptive hybrid controller. 
        Two main methods exist for providing a neural network with dynamic behavior: 
the insertion of a buffer somewhere in the network to provide an explicit memory of 
the past inputs, or the implementation of feedbacks. As for the first method, it builds 
on the structure of feedforward networks where all input signals flow in one direction, 
from input to output. Then, because a feedforward network does not have a dynamic 
memory, tapped-delay-lines (temporal buffers) of the inputs are used. The buffer can 
be applied at the network inputs only, keeping the network internally static as in the 
buffered multilayer perceptron (MLP) or at the input of each neuron as in the MLP 
with Finite Impulse Response (FIR) filter synapses (FIRMLP). The main 
disadvantage of the buffer approach is the limited past-history horizon, which needs 
to be used in order to keep the size of the network computationally manageable, 
thereby preventing modeling of arbitrary long time dependencies between inputs and 
outputs  It is also difficult to set the length of the buffer given a certain application 
[4]. 
          The second method, the most general example of implementation of feedbacks 
in a neural network is the recurrent neural network constituted by a single layer of 
neurons fully interconnected with each other or by several such layers Because of the 
required large structural complexity of this network, in recent years growing efforts 
have been propounded in developing methods for implementing temporal dynamic 
feedback connections into the widely used multi-layered feedforward neural 
networks. Recurrent connections can be added by using two main types of recurrence 
or feedback: external or internal. External recurrence is obtained for example by 
feeding back the outputs to the input of the network, while the internal recurrence is 
obtained by feeding back the outputs of neurons of a given layer in inputs to neurons 
of the same layer, giving rise to the so called Locally Recurrent Neural Networks 
(LRNNs)  [5]. 
          Recurrent neural networks (RNNs) are widely acknowledged as an effective 
tool that can be  employed by a wide range of applications that store and process 
temporal sequences. The ability of RNNs to capture complex, nonlinear system 
dynamics has served as a driving motivation for their study. RNNs have the potential 
to be effectively used in modeling, system identification, and adaptive control 
applications. The proposed RNN learning algorithms rely on the calculation of error 
gradients with respect to the network weights. What distinguishes recurrent neural 
networks from static, or feedforward networks, is the fact that the gradients are time 
dependent or dynamic. This implies that the current error gradient does not only 
depend on the current input, output, and targets, but rather on its possibly infinite past. 
 
2- System Identification. 
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          Feedforward neural networks are composed of neurons in which the input layer 
of neurons is connected to the output layer through one or more layers of intermediate 
neurons،The training process of neural networks involves adjusting the weights till a 
desired  
 
input/output relationship is obtained. The majority of adaptation learning algorithms 
are based on the fast momentum backpropagation the mathematical characterization 
of a multilayer feed forward network is that of a composite application of functions 
each of these functions represents a particular layer and may be specific to individual 
units in the layer, e.g. all the units in the layer are required to have same activation 
function. The overall mapping is thus characterized by a composite function relating 
feed forward network inputs to output. That is O=fcomposite (x) . Using ( p ) mapping 
layers in a ( p+1 ) layer feed forward net yield: 
 O=f Lp (f Lp-1 …….(fL1 (x).........) ). Thus the interconnection weights from unit ( k ) in 
L1 to unit ( I ) in  L2 are wL1-L2 . If hidden units have a sigmoidal activation function, 
denoted f sig  [6]. 
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Where: 2L
iO  is the o/p neuron i in L2 . Hi is number of neurons which connect with 

neuron i . L0 ,L1 , L2  represents the layers of N.N. 
          Above equation illustrates neural network with supervision and composition of 
non-linear function.The learning is a process by which the free parameters of a neural 
network are adapted through a continuing process of  simulation by the environment 
in which the network is embedded. The type of learning is determined by the manner 
in which the parameters changes take place. A prescribed set of well defined rules for 
the solution of a learning problem is called learning algorithm. The Learning 
algorithms differ from each other in the way in which the adjustment kj, ∆w to the 
synaptic weight wkj is formulated. The basic approach in learning is to start with an 
untrained network.  
          The network outcomes are compared with target values that provide some error. 
Suppose that tk(n) denote some desired outcome (response) for the Kth neuron at time 
n and let the actual response of the neuron is Ok(n) . Suppose the response yk(n)  was 
produced when x(n) applied to the network. If the actual response yk(n) is not same as 
tk(n) ، we may define an error signal as:    ek = tk(n) – yk(n). 
The purpose of error-correction learning is to minimize a cost function based on the 
error signal ek(n). Once a cost function is selected, error-correction learning is strictly 
an optimization problem. A cost function usually used in neural networks is mean 
square error criteria called L.M.S learning. 
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          Here summation runs over all neurons in the output layer of the network. This 
method has the task of continually search for the bottom of cost function in iterative 
manner Minimization of the cost function J with respect to free parameters of the 
network leads to so-called Method of Gradient Descent [8]. 
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           The proportion of error for weight updating (correction). The learning 
parameter has a profound impact on the performance of convergence of learning. A 
plot of the cost function versus the synaptic weights characterizes the neural network 
consists of a multidimensional surface called error surface. The neural network 
consists of cross-correction learning algorithm to start from a n arbitrary point on the 
error surface (initial  weights) and then move  
towards a global minima, in step by step fashion. We can gain understanding and 
intuition about the algorithm by studying error surfaces themselves the function J(w), 
Fig.(2) show the error surface. Such an error surface depends upon the task in hand, 
but even there are some general properties of error surfaces that seem to hold over a 
broad range of real-world pattern recognition problems. 
          In case of non-linear neural network, the error surface may have troughs, 
valleys, canyons, and host of shapes, where as in low dimensional data, contains 
many minima and so many local minima plague the error landscapes, then it is 
unlikely that the network will find the global minimum. Another issue is the presence 
of plateaus regions where the error varies only slightly as a function of weights see 
and. Thus in presence of many plateaus، training will get slow. To overcome this 
situation momentum is introduced that forces the iterative process to cross saddle 
points and small landscapes. 
           Neural network training begins with small weights; the error surface in the 
neighborhood of w≈0will determine the general direction of descent. High 
dimensional space may afford more ways dimensions for the system to ‘get around’ a 
barrier or local maximum during training. For large networks, the error varies quite 
gradually as a single weight is changed. For networks having differentiable activation 
functions, there exist a powerful and computationally efficient method, called error 
backpropagation for finding the derivatives of an error function with respect to the 
weights and biases in the network.Gradient Descent algorithm is the most commonly 
used error backpropagation method. 
          Standard backpropagation is a gradient descent algorithm, in which the network 
weights are moved along the negative of the gradient of the performance function. 
There are a number of variations on the basic algorithm that are based on other 
standard optimization techniques, such as conjugate gradient. Backpropagation was 
created by generalizing the learning rule to multiple-layered networks with nonlinear 
differentiable transfer functions which is the gradient of the pattern error with respect 
to weight wk and forms the basis of the gradient descent training algorithm. 
Specifically, we assign the weight correction,  ∆wk  ، such that [7]. 
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          Mostly, the learning algorithms involve a sequence of steps through weight 
space. We can consider each of these steps in two parts. First decide the direction in 
which to move and secondly, how far to move in that direction. This direction of 
search provides minimum of the error function in that direction in weight space. This 
procedure is referred to as line search and it forms the basis for several algorithms 
which are considerably more powerful than gradient descent. Suppose at step n in 
some algorithm the current weight vector is  wn and we wish to obtain a particular 
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search direction  pn through weight space. The minimum along the search direction 
then gives the next values for the weight vector as: 
 

nnnn pww λ+=+1                                                                                                          (5) 

 
          This gives us an automatic procedure for setting the step length, once we have 
chosen the search direction. The line search represents a one dimensional 
minimization problem. This minimization can be performed in a number of ways. A 
simple approach would be to  
 
proceed long the search direction in small steps, evaluating the error function at each 
step (position), and stop when the error starts to increase. It is possible, however, to 
find much  
more efficient approaches. This includes the issue that whether local gradient 
information is preferable in line search. The search direction is towards the minimum 
is obtained (possibly)  
through proper weight adjustments, this involves search through negative direction of 
gradient information. To apply line search to the problems of error function 
minimization, we  
need to choose a suitable search direction at each stage of the algorithm. Note that at 
minimum of the line search 
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          Thus the gradient of the new minimum is orthogonal to the search direction. 
Choosing successive search directions to the local (negative) gradient directions can 
lead to the problem of slow learning. The algorithm can then take many steps to  
converge, even for a quadratic error function. The solution to this problem lies in 
choosing the successive search directions dn to minimize cost function such that, at 
each step of the algorithm, the component of the gradient parallel to the previous 
search direction which has just been made zero, is unaltered Suppose, we have 
already performed a line minimization along the direction dn , starting from the point 
wn , to give the new point  wn+1 [8]. 
 
3- Control Architecture. 
          In direct MRAS, the controller parameters are directly adjusted to reduce some 
norm of the output error between the plant output and the desired reference trajectory. 
The controller structure used in this paper illustrated in Fig.(3) where the controller 
represent by hybrid controller between classical controller and neural controller, the 
outputs of the two controllers will be summed and entered to servo[9]. 
 The input to classical controller is the error signal and the parameter of it 
adjusting at freezing point because the varying in system, the adjusting of parameters 
in classical controller achieved firstly. Error signal and its derivative forms the input 
to neural controller and, can be add any state from the system. The adjusted the 
weights achieved by FRBP, and the structure of N.N controller illustrated in Fig.(4) ( 
see ref 10). It consist of i/p Layer (I), hidden Layer (H) and output Layer (O). The 
weight matrix consists of wImxi and wOnxm, the characteristic of the network is that the 
units in hidden layer are connected with themselves and each other. However, the 
information in such units at one time can only be transferred until being replaced by 
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new data after finite steps, i.e. the units in hidden layer only memorize the 
information for finite time which is the key difference from the fully recurrent BP. 
For the sake of this, the network here is called finite recurrent back propagation 
network. Hence at the time (t) the input to the (ith) hidden units is: 
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The activation function (f) at the o/p layer of controller is a tangential, while the 
others activation function (g) is sigmoidal that is: 
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The output of the network is a weighted sum of the hidden unit o/p’s: 
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The net is trained by minimization of the total error, which is evaluated as that: 
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Where; (pp) is the sample length, Tkp(t) are the target values that the output of 

the (kth) unit in output layer while inputting the (pth) sample match at time (t). This 
can be fulfilled by a gradient descent procedure adjusting (w) a long the negative of 
∇w E(t). the weight change for network by FRBP algorithm which shown in [10]. 
 
4- Case Study. 
          The system using here represents single channel in spacecraft, with transfer 
function [11]: 
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Where, the coefficient (A1, A2…..B3) are calculated as function of time and the input 
(δ) to dynamic system is the deflection of elevator, we used the lookup table for these 
parameters and can be get at freezing point numeric transfer function is: 
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the transfer function for servo used here is: 
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Where k=2 , C= 0.01 and D = 0.075 
 
 The classical controllers used for this system with period of time 
 (0 to 140 sec) adapted at specified freezing points on all the time are given by the 
following transfer function: 
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 The input to neural controller represents by vector [ ]eeXp αα= & ; where it 

represents by error signal and its derivative (see Fig.(3)), and the N.N is multi-layer 
network (2-20-1) with learning rate (αr) equal to (0.009) and momentum term (mu) 
equal to (0.0025). The two outputs (neural and classical controller O/PS) are summed 
and entered to servo: 
 

c)p(Fe δ+α=δ                                                                                                      (15) 

 
The complete nonlinear single channel controller is shown in Fig.(5). The 

input to the system is taken as unit step, the simulation results by using Matlab 
software package ver.8a,[12]; it’s can be summarized as: 
* identification part which shown in Fig.(6) ,from it can be illustrated the ability of 
FRBP network to identify the response of time varying . nonlinear dynamic system 
and shown the ability to adjustment and tuning its parameters to get high accuracy 
identify results and overcome for main problem in identification of this type of system 
(i.e: the local and global minimum  that shown in Fig.(2) , where we get error 
approach to zero after 100 iteration for  identification and used this results as initial 
condition for running controller in the next step. 
* the limitation of deflection of elevator of plant ( delta) about ( ± 20º , i.e about 0.35 
rad ) from Fig.(7) it can de seen that the o/p of elevator is fulfill this constrain and this 
done without using the limiting part in classical approach this results get with N.N 
controller with tangential activation function in the o/p layer. 
* In the hybrid controller with DNMRAC the affect of high accuracy of identify 
appear at the choose of initial condition of neural controller and the values of 
parameters of classical controller .From Fig's.(8 9 & 10) it can be seen the efficiency 
of this type of controller for dealing with the time varying nonlinear dynamical 
system and get the desired response with very accepted  rising time ,steady state error 
and minimum overshot, where we check the system with many types of inputs and it 
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overcome on the problem of choose the reference model where  the choose of desired 
o/p is very , where we used the input signal is the desired signal. 
 
5- Conclusions.  
 From the results it can be illustrated that the ability of direct hybrid controller 
with FRBP network to treat the time varying dynamic system and forced it to 
followed the desired input. The FRBP Network has high speed learning to get the 
desired error, this property offer for the neural controller to treatment many types of 
system and get desired response, where the main problem of time varying dynamic 
system the variation of transfer function with time , this constrain need to solving the 
problem by special  N.N, where it offers high response with any types of input signal 
and depend the instantaneous state of system as initial condition to next state all these 
requirements gets in FRBP network. 
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7- Nomenclature. 
( α ) : input signal to classical controller. 
(αd ) : desired input signal. 
(αe ) : error signal between o/p plant and reference signal. 
( δ ) : input signal to plant. 
( δc ) : o/p for classical controller. 
(δe ) : summation signals of classical and neural controllers. 
( η ) : learning rate in identifier network. 
 
( ek ) : error signal in neuron. 
( mu ) : momentum term in learning of identifier network. 
( tk ) : target signal for neural network. 
( pp ) : No. of sample in training network. 
( Ok ) : o/p of neurons in network. 
( wik ) : weight between input layer to hidden layer  
( wko ) : weight between hidden layer to output layer 
 
 
 
 
 
 
 
 
 
 
 

                            

                                               Figure(1): direct adaptive hybrid controller. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure(2): quadratic error surface with local and global minimums. 
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                                         Figure(3): hybrid controller structure. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure(4): FRBP Network with (I) Input, one Hidden Layer of (m) Units and (n) 
Outputs.    
            (The Dotted Curve Lines Denote the Finite Recurrent Connection). 
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           Figure(5): Complete neural controller for simple channel  for spacecraft. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure(6): Identification system and adjusting its parameters . 
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Figure(7): The deflection of elevator (δ) with respect to time. 
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Figure(8): comparison between classical controller and neural controller by 
FRBP network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(9): The o/p of Neural controller and classical controller for all time. 
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Figure(10): the response of two controller with ramp input signal (A) positive 
slope,(B)negative slope. 
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  مسيطر عصبي لTنظمة الديناميكية المتغبرة مع الزمن
  درس المساعدالم

  محمد المشھداني إسماعيليوسف 
.قسم الھندسة الكھربائية –كلية الھندسة  –جامعة ا�نبار   

  
  

  .الخلاصة

 (R.P.N.N) ذات التعليم العكسي بخاصية اsرجاع العكسي الشبكات العصبية إمكانيةتعرض المقالة 
السيطرة المتكيفة  أنظمةالديناميكية المتغيرة مع الزمن، وذلك من خ�ل استخدام  ا�نظمةفي السيطرة على 

يتكون من   (Hybrid Controller)بواسطة استخدام مسيطر ھجين  (Direct Adaptive Control)المباشرة 
 (FRBP Network)كسي المحدد المسيطر التقليدي ومسيطر عصبي يكون بناءه من الشبكات ذات التعليم الع

بواسطة عملية  ا�وزانضبط  أعادةوذلك من خ�ل  ا�نظمةھذه الشبكات في العمل كمسيطر لھذه  sمكانيةوذلك 
مبينة من خ�لھا إمكانية ھذة الشبكات على التغلب على أھم  تعليم الشبكة للحصول على درجة التقريب المطلوبة

الديناميكية المتغيرة مع الزمن في عدم وجود دالة انتقالية تعرف سلوك  مشاكل تعريف المنظومات ال�خطية
  .النظام مع الزمن

، تم الحصول على نتائج الحركة في المركبة الفضائيةالمثال المستخدم في ھذه المقالة ھو أحد قنوات         
حيث تم عرض  تغيرة مع الزمناستخدام ھذا ا[نموذج في السيطرة على ا[نظمة الديناميكية الم تؤكد أمكانية

  .نتائج التعريف للمنظومة ونتائج المسيطر العصبي الھجين مقارنة مع نتائج المسيطر التقليدي
  
  
  
  
  
  
  
  
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


