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Abstract

In this research a simply supported beam is used as a master structure with unknown number of
attachments (fuzzy substructure) which is modeled as a system of 1-DOF attachments. Two types
of attachments models were studied, namely 1-DOF mass attachment model and 1-DOF mass-
spring attachment model. It is shown that the effect of attachments on the master structure natural
frequencies when modeled as (mass-spring substructure) is larger than that when modeled as
(mass substructure) for the same attachment mass. Engineering Statistics and normal distribution
were used to find the values of the attachments to be added to the simply supported beam to
improve the dynamical properties of the master structure and to find the best distribution of the
attachment. The results also show that the distribution of the additional substructure can produce
a great change in the natural frequencies so that the proposed statistical approach can be used to
find the best distribution of attachments and number, value and location of the additional
substructure .
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1.Introduction

A fuzzy structure is defined as a master structure that is accessible to conventional
deterministic modeling, coupled with fuzzy substructures which are not accessible to
conventional deterministic modeling and for which a probabilistic model is used. The part of the
structure which can be modeled conventionally (shell, ribs, bulkheads, etc.) is called the master
structure. The remaining part of the structure, which cannot be modeled conventionally, is called
the fuzzy substructure as shown in Fig.(1).

D. Moens et al. [1] showed that small uncertainties on models are known to cause possibly
large uncertainties on analysis results. Therefore, techniques have been developed to include the
effect of the uncertainties. On the model in the calculation of the results of an analysis, the Monte
Carlo simulation calculates these uncertainties by performing a stochastic analysis on the results
of a large number of samples of one calculation.

Christian Soize [2] showed that the structural complexity can be induced by secondary
mechanical subsystems attached to the "“master" structure or by "'local eigen modes" of some
continuum elastic sub elements of the master structure; these local eigen modes induce a
structural complexity when the model of these sub elements can only restitute the elasto-static
behavior but not its elasto-dynamic response. Within this context, a model is presented of the
apparent vibration damping of the master structure due to the vibrations of the structural
complexity. This vibration-damping model is deduced from the theory of fuzzy structures that
was previously developed by the author. Presently, this model uses only the mean part of the
probabilistic fuzzy law of the fuzzy substructure

Victor et al. [3] present the application of the fuzzy structures analysis (FSA)
procedures of Soize[2] to prototypical aerospace panels in MSC/NASTRAN, a large commercial
finite element program .A brief introduction to the FSA procedures is first provided. The
implementation of the FSA methods is then disclosed, and the method is validated by comparison
to published results for the forced vibrations of a fuzzy beam.
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Bahaa & wedad [4] showed that the dynamic analysis (free vibration) of multi-body
system flexibly supported by linear mountings. The multi-body supporting system can be
represented by a cantilever plate structure which contains an additional bodies like electrical and
mechanical parts .An important type of multi-body systems constructing from a cantilever plate
which is used as a flexible-mounting base for other components. This method for fixing can
commonly used for isolation of electronic components (or electronic cards). The results showed
that the masses of the additional bodies and their distribution on the plate structure can produce a
great change in the natural frequencies and the mode shapes of the mounting system .

A. V. Pesterev [5], showed that the problem of calculating the dynamic response of a
one-dimensional distributed parameter system carrying multiple moving oscillators is examined.
A solution procedure is suggested that reduces the problem to the integration of a system of linear
ordinary differential equations governing the time-dependent coefficients of the series expansion
of the response in terms of the eigen functions of the continuous structure. The program
implementation of the solution procedure is discussed and numerical results are presented.

Jong-shyong [6 ] showed that since the literature relating to the natural frequencies and
mode shapes of the double-tapered wedge beams carrying multiple point masses is rare .The
object of this paper is to present some information in this aspect. First of all, the closed-form
solutions in the terms of the Bessel functions for the natural frequencies and normal mode shape
of the (bare) wedge beams (with out carrying any point masses) were determined. Next , the
partial differential equation of motion for the ( loading ) wedge beams (carrying any number
point masses ) were transformed in to the matrix equation by using the expansion theorem and
the foregoing natural frequencies and normal mode shape of the ( bare ) wedge beam . Finally,
the eigen value equation associated with the last matrix equation was solved to give the natural
frequencies and the mode shapes of the (loading) wedge beams.

Jia-Jang [7 ] showed that to determine the natural frequencies and mode shapes of beams
they have to carry any number of two-degree-of-freedom (DOF) spring-mass systems by means
of two finite element methods FEM1 and FEM2. FEMI is the conventional finite element
method (FEM), in which each two-DOF spring-mass system is considered as a finite element
and then the assembly technique is used to establish the overall property matrices of the
constrained beam. FEM2 is an alternative approach, in which each two-DOF spring-mass system
is replaced by four effective springs and then the overall property matrices of the constrained
beam are obtained by considering the whole structural system as the unconstrained beam
elastically supported by the effective springs.

Tianjian et al.[ 8 ] show that the Human-structure interaction has not been considered
before. One reason is that the human body is traditionally considered as an inert mass in
structural vibration. It was found that the human body did not act as an inert mass but as a mass-
spring-damper system. This finding, together with many site measurements, forms a basis of a
new topic, human-structure interaction and leads to new applications .

The present work deals with studying the effect of one degree of freedom mass and
mass-spring attachment models on natural frequencies and their associated mode shapes for free
vibration of a simply supported beam . Also, the best distribution of the attachments according to
the normal distribution criteria is sought.

2.Theoretical considerations:

2.1.Beam theory of vibration:
The bending equation for the beam shown in Fig.(2) is[9]:
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In a continuous system , there is an infinite number of natural frequencies (eigenvalues) and
associated modes (eigenvectors) so that:

w(x,t)=wi(x)el®t (2)

Consider the homogeneous case (P(x,t) = 0) and (EI) does not vary with x, thus:

4
AW i =0 (3)
dx

EI

Placing the assumed mode of Eq.(2) in the governing equation, Eq.(3) yields:

d*w 2

EI -maow
dx?

w=0 4

The solution to this homogeneous equation is :

wi(x)= C, sinh Ax + C, cosh Ax + C, sin Ax + C, cos Ax Q)
Where:

2
2= (MP yi/4
(EI)

Applying the boundary conditions for the simply supported beam, the solution can be found
to be :
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Now, the attachments can be treated by Rayleigh method to give the upper bound to the
fundamental frequency of:
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The lower bound to the fundamental frequency using Dunkerly equation is then made by:
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The value, number and distribution of substructures was assumed to happen according to the
normal distribution criteria. For instance, when attaching one mass the mean of the natural
frequencies was calculated by:

n
Mean (N) = (1/n) x ) f; 9)
i=1
, the standard deviation :

a=\/ LS - ¥ (10)

_1 i=1
and the normal distribution:

Z={f-tMN)} /o (i

Where f is random variable

2.2.Modeling:

The master structure is modeled as BEAM3 which is a unit-axial element with tension,
compression, torsion, and bending capabilities .The element has three degrees of freedom at each
node translations in the x and y direction and rotation about the nodal z-axis.

For 1-DOF mass attachment model, the substructure is modeled as MASS21 which is a
point element having up to six degrees of freedom : translations in the nodal x , y , and z
directions about the nodal x , y and z axes . A different mass and rotary inertia may be assigned
to each coordinate direction.

For 1-DOF mass-spring attachment model the substructure is modeled as COMBIN40
which is a combination of a spring —slider and damper in parallel , coupled to a gap in series . A
mass can be associated with one or both nodal points.

The simply supported beam is considered as a main structure , and two types of attachment
models have been tested, namely ( 1- DOF mass attachment) and (1-DOF mass — spring
attachment) ; the number of attachment is to be between one to five and their location is
considered to be (x =L/6,L/3,L/2,2L/3,5L /6 ). Fig.(3) shows such a beam .This simply
supported beam is modeled to seven nodes . The material properties and dimensions of the tested
main structure are listed in Table(1).Testing programs had been designed as shown in
Tables(2&3) .

3.Results and Discussion:

The calculated changes in natural frequencies due to attaching one mass ( mg ) at the
positions, defined in Table(2), were plotted in Figs.(4 through 8) for values of the added mass
not exceeding (11% ) of the original mass of the beam to avoid initial deformation or bending of
the beam. In these figures, it can be noted that all natural frequencies decrease with increasing the
added mass. The maximum change is equal to (10 %) for the first mode shape and with an
attachment mass equal to (0.1073) of the beam mass (master structure mass).

Some of the natural frequencies are unchanged due to the change in the attachment
mass and location , like the sixth natural frequency which was unchanged in all cases where the
attachment is at or near the node pomts ( zero deflection ) of these mode shapes.

The calculated change in natural frequencies due to attaching one ( mass- sprmg ) at
the positions defined in Table(3) , were plotted in Figs.(9 through 13) ; values of the mass (my )
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and stiffness ( ko ) of the spring are chosen equal to the first mode of the beam (without any
attachment which is equal to 28.759 Hz ) .Again the added mass does not exceed (11% ) of the
original mass of the beam . In these figures, it is shown that the 1-DOF mass-spring attachment
model has an effect on the first natural frequency only. The maximum change in natural
frequencies is (20 %) for one mass-spring attachment model with an attachment mass equal to
(0.1073) of the beam mass and spring stiffness equal to (0.7855) of the beam stiffness. Other
natural frequencies are unchanged due to the change in the attachment mass-spring model .

By comparing results for the two attachment models as shown in Figs.(14 through 18) , it
can be noted that 1-DOF mass-spring model has a greater effect on the first natural frequency by
nearly 10% than the effect of 1-DOF mass model .

Engineering Statistics and normal distribution have been used to find the best distribution
of the attachments. Thus, the natural frequencies for unknown number of attachments are shown
in Fig.(19) and the probability of distribution of these attachments is plotted in Fig.(20).
To find the best distribution of four masses with probability (40 %): From Fig.(20) , f1/F1 =
0.9657 and the value of the attaching masses are (4m;/ M = 0.0719 ) from Fig.(7). And for all
cases one can follow this procedure to determine the value of attaching mass for known number
of masses.

To determine the number of attaching masses with probability (40%): From Fig.(20),
fi/F1=0.9584 ; From Fig.(19) the ratio(m¢/M) lies between (0.06869 — 0.07298 ) and from
Fig.(18) the best number of masses are (5).

The natural frequencies for unknown number of mass-spring attachments for the first
natural frequencies are plotted in Fig.(21), and the probability of distribution these attachments
is plotted in Fig.(22). To find the best distribution of four (masses—springs )with probability
(40%): From Fig.(22), the value of fi/F; = 0.8779 , and the values of the attaching masses are
(4m;/ M = 0.06869 ) from Fig.(12) and the value of the attaching spring stiffness ( 4k; = 91420
N/m ). And for all cases one can follow this procedure to determine the value of attaching (mass-
spring ) for known number of masses.

To determine the number of attaching masses and springs with probability (40 %) :
From Fig.(22) f1/F1=0.8663 and from Fig.(21) the mass (my/M) lies between (0.0644 -
0.06869) and from Fig.(18) the best number of masses is (5).

4.Conclusions:
The main conclusions that might be drawn are:

1- The additional substructure is a very important parameter in dynamic analysis of structures.

2- All natural frequencies decrease with increasing the added mass.

3- The effect of attachments when modeled as (mass-spring substructure) is greater than the
effect of attachments when modeled as (mass substructure) for the same attachment mass.
4- The proposed statistical approach can be used to find the best distribution of attachments
according to the probability of the normal distribution so that one can find the best number, value
and location of the additional substructure .
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6.Nomenclature:

A area of the beam ( m?)

As shear area ( m?)

E Young’s modulus ( N/ m?)
f1 .12, natural frequencies of the beam with attachment
P force (N)

Fi,F,, natural frequencies of the beam without any attachment (rad / sec)
G shear modulus ( N/ m?)

H width (m)

I area moment of inertia (m4)

i,] integer

k spring constant (N / m)

L length (m)

M mass of beam (kg)

mj, my, attaching mass (kg)

{Me} The element matrix

M(x) mass per unit length (kg / m)

N mean

w transverse deflections (m)

®n the natural frequency of vibration(rad/sec)
X,y,Z Cartesian coordinates, displacement

p mass density (kg / m?)

{} matrix

r radius of gyration(m)
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Table (1 ): The Material properties and dimensions of the main structure

Value Unit
E 206.844E9 N/m?
A 2.58064E-3 m®
H 5.08E-2 m
L 2.032 m
p 7778 Kg/m?
[ 5.55E-7 m*
K 656759 N/m

Table (2): Testing program for mass attachment model

No. of Value of one additional
0.0 Value of additional mass / beam mass Position of additional
additional
mass( kg ) my/ M masses
masses
Start value | final value
1 my=0.175 0.02146 0.1073 L/2
2 m;=m, = 0.0875 0.01073 0.05365 L/3,2L/3
m; =mp =msz=
3 0.05833 0.0071533 | 0.035766 L/3,L/2,2L/3
m;= mp = m3= My L/6,L/3,2L/3,
4 ~0.04375 0.005365 | 0.026825 SL/6
m;=m; = mz=my =ms L/6,L/3,L/2,2L/3 ,
5 = 0.035 0.004292 0.02146 SL/6
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Table (3): Testing program for mass-spring attachment model

Value of one additional
No. of
L Value of Value of mass / beam mass ..
additional .. .. Position of
additional additional mass ..
masses- . . additional masses
. spring stiffness (kg) final
spring Start value
value
1 Kop my=0.175 0.02146 0.1073 L/2
_ m;=m,; =
2 ki=k 0.0875 0.01073 0.05365 L/3,2L/3
o m; =m, =m; =
3 ki =k, =k; 0.05833 0.0071533 | 0.035766 | L/3,L/2,2L/3
k1:k2:k3: m;=mp = ms= L/6,L/3,
4 k. m, =0.04375 0.005365 0.026825 2L/3 . 5L/6
k1:k2:k3: m;=mp = m3= L/6,L/3,L/2,
5 K, = ks m, = ms = 0.035 0.004292 0.02146 2L/3 .5L/6
F
= master shachire - i
EEE-E
fu==y atachiments
Figure(1): A simply supported beam with attachment
Z
A
A—/—A
R pix:t)
| L .
;' —l Z — " g X

Figure(2): Representation of generalized beam-column
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Figure(3): A-simply supported beam without attachment
B- simply supported beam with attachment

0.98 “\FI\(\\“
0.96 | S
0.94 -
L
~
N
0.92 -
0.9 + I
0.88
0.86 t t t t t t t t t t t t t t t t t t t
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
mo /M
x ( 0.004249
first natural frequencies (f1/F1) —+—— second natural frequencies (f2/F2)
——=<&—— third natural frequencies (f3/ F3 ) —>¢—— fourth natural frequencies (f4/F4 )

fifth natural frequencies ( f5/ F5) sixth natural frequencies (f6/F6)

seventh natural frequencies (f7 /F7 )

Figure(4): Effect of one additional mass at position x=L/2 on the natural frequency
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Figure(5): Effect of two additional masses at position x=L/3 , x=2L/3 on the natural
frequency
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Figure(6): Effect of three additional masses at position x=L/3 on the natural frequency
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Figure(7): Effect of four additional masses at positions x=L/6,L./3,5L/6,2L/3, on the natural
frequency
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Figure(8): Effect of five additional masses at positions x=L/6,1./3,1./2,5L/6,2L/3, on the natural
frequency
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Figure(9): Effect of one additional mass-spring at position x=L/2 on the natural frequency
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Figure(10): Effect of two additional mass-spring at position x=L/3,2L./3 on the natural
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Figure(11): Effect of three additional mass-spring at positions x=L/3,L/2,2L./3 on the
natural frequency
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Figure(12): Effect of four additional mass-spring at positions x=L/6,1./3,21./3,5L/6 on the natural
frequency
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Figure(13): Effect of five additional mass-spring at positions x=L/6,L/3,1./2,2L/3,5L/6 on the

natural frequency
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Figure(14): Effect of one additional mass, mass-spring model on the first natural frequency
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Figure(15): Effect of two additional mass, mass-spring model on the first natural frequency
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Figure(16): Effect of three additional mass, mass-spring model on the first natural frequency
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Figure(17): Effect of four additional mass, mass-spring model on the first natural frequency
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Figure(18): Effect of five additional mass, mass-spring model on the first natural frequency
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Figure(19): Effect of the number of additional masses on the natural frequency
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Figure(20): Probability of the number of additional masses
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Figure(21): Effect of the number of additional mass-springs on the first natural frequency
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Figure(22): Probability of the number of additional mass-springs
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