Anbar Journal for Engineering Sciences © AJES,Vol.1,No.2 / 2008

ANALYSIS OF MULTI-LAYER COMPOSITE SIMPLY
SUPPORTED BEAM UNDER BLAST LOADING

Dr. Khaleel 1. Aziz Mr. Ahmed T. Al — Ejbari
University of Anbar University of Anbar

ABSTRACT

In this study an attempt is made to derive governing equations satisfying equilibrium
and compatibility, for multi-layer composite simply supported beam under blast loading ,
for linear material and shear connector behavior in which the slip (horizontal displacement)
and uplift force (vertical displacement) are taken into consideration. The analysis is based on
an approach presented by Roberts, which takes into consideration horizontal and vertical
displacements in interfaces. The model consists of a simply supported beam with three layers
having a cross-sectional area ,different dimensions and material properties. The analysis led
to a set of six differential equations containing derivatives of the fourth and third order. The
blast loading was considered as a function of time. Explosions have different effects
including blast, penetrations and fragmentation. The blast is the main effect which hits the
structure in short duration. Multi —layer composite construction is the best type of
constructions to resist the blast loading ; according to this , multi-layer composite
construction is used for air-craft and marine industries. Analysis of composite beam under
blast load , taking in consideration vertical and horizontal displacements, leads to six
differential equations , the load is taken as a function of time.
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1.INTRODUCTION

An explosive is a mixture or chemical compound which, under the influence of heat

or shock, undergoes a chemical reaction of the following types:

1.A considerable amount of energy is liberated.

2.The explosive is converted into gas which is at high temperature and under high pressure.
3.The reaction needs no support from the outside , if started under certain conditions , it will
spread through the entire explosive[1]

Blast

When detonation of a charge takes place in the air, the case of charge bursts and the
surrounding air is compressed , so much heat is created in the air that it becomes luminous.
The outer surface of luminous region is called the flame front. After the case of the charge
breaks , the gaseous products of the explosion burst forth and continue to expand. The initial
velocity of expansion of these gases varies from 6000 to 30000 feet per second. The gases
cool rapidly and lose most of their velocity after they have gone a distance 40 to 50 times the
diameter of the charge. The variations of pressure of these gases are carried into the
surrounding air where they influence the form of the blast wave.

The blast wave from an exploding charge is characterized by an immediate rise in
pressure from atmospheric to the peak pressure of the blast wave followed by a rapid
decrease to sub-atmospheric pressure and then a slower increase to atmospheric value. Thus
the blast wave has two phases : the abrupt rise of pressure followed by a decrease to
atmospheric is called the positive or pressure phase, and the decrease of pressure to sub-
atmospheric followed by a return to atmospheric is called negative or suction phase, as shown
in Fig.(1).
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The area under the positive phase of the pressure-time curve is called the positive
impulse of the blast, the area under the remaining portion is called the negative one. The
instantaneous rise in pressure results from there being a region or surface around the
detonation of a bomb in front of which the air is undisturbed and behind which the air is
under great pressure. The surface is called the shock front of the blast wave. In air or
compressible fluids, high pressure creates a shock front because they heat the medium and
expand rapidly.

The physical characteristics of the shock wave may be defined in terms of peak pressure and
impulse of various distance.

The peak pressure is maximum during the initial phase. Peak pressure from bombs , cased
and uncased charges , may be determined from the following formula[1]:
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Another formula suggested by Birmam and Bert is[2]:
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2. COMPOSITE CONSTRUCTION

Composite construction has been widely used in building construction. A perfect
connection between the components of composite elements exists only theoretically.
Experimental investigation has shown that significant slip occurs at the interface between
these components, even when a large number of connectors are provided. The modification in
the behavior of a composite beam by the presence of slip was illustrated by analysis
conducted by many researchers. These analyses led to differential equations (number of
which depends on the degree of freedom) that are to be solved fresh for each type of loading
and the variation in dimensions or properties of beams. The first interaction theory that takes
account of slip effects was initially formulated by Newmark et al.[4], based on elastic
analysis of composite beams assuming linear material and shear connector behavior. Adekola
[5] presented a different model based on interaction theory, which takes account of slip, uplift
and friction effect. Using the same element presented by Newmark et al., Johnson [6] in 1975
proposed a partial interaction theory for simply supported beams, in which the analysis was
based on elastic theory. The composite beam was assumed to have linear elastic materials.
Roberts [3] presented an approach for the analysis of composite beam with partial interaction,
in which the basic equilibrium and compatibility equations were formulated in terms of four
independent variables, i.e. the axial displacements of the concrete and steel and the
deflections of the two layers. Linear elastic materials and shear connector behavior were
assumed with the concrete remaining uncracked, and both the slip and separation at the
interface were incorporated.

3. MATHEMATICAL MODEL

Interaction theories which consider the slip, were formulated by many researchers.
Newmark et al. [4] presented one of the earliest linear analyses of composite beams,
incorporating the influence of slip. A recent approach has been presented by Roberts[15] in
which the basic equilibrium and compatibility equations are derived in terms of
displacements and solved simultaneously using a finite difference representing the various
derivatives. Al-Amery [16] presented a new approach, considering non-linear materials and

shear connector behavior.
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In this study, the model, consists of three different layers, different materials and shear
and normal stiffness. The analysis leads to a set of six basic equilibrium and compatibility
equations that were formulated in terms of displacements (horizontal and vertical) of each
layer. These differential equations were expressed in finite difference form, and the resulting
simultaneous algebraic equations were solved numerically.

For composite elements to act as a single structural unit, an efficient connection must
be provided, which serves to transfer shear and normal forces and prevent significant relative
movement between the layers, where the connectors are flexible, the slip and separation, may
occur at the interfaces.

3.1 Assumptions

The basic assumptions of conventional beam theory were used in which plane
sections are assumed to remain plane. Also, the connection was assumed to have negligible
thickness and posses finite normal and tangential stiffness.

3.2 Equilibrium

An element of a composite of three layers, length 6k, shown in Fig.(2), is subjected to
moments, M, shear forces, V, and axial forces, F, subscripts a, b, and ¢ denotes three layers
from upper to lower layer, and the local x-z axes pass through the centroids of the materials.
If the beam is subjected to blast loading according to Eq.(1) plus distributed load o per unit

length, vertical equilibrium of the whole element gives:
N, + oV, + 3V, = pX+ P,ox 3)
Dividing equation (3) by &k and taking a limitas ok tends to zero gives:

Vox *Vox +Ve, =p +P, 4)

In which subscript x denote differentiation, for live load only p;, for live load and dead load,
p isequal to:

P =P+ Pat Pot P (%)

In which p,, p, and p, are the distributed self-weight of the three layers. Loads due to the

removal of props used during construction should be considered as live loads.
Taking moments about the origin of coordinates in the upper layer gives:

M, +M, +M_ =V, +V, +V, )+ (oV, + 0V, +é\/c).%+é1:b.dl+éFc.(dl+d2)
(6)

In which d, and d, are the distance between the centroids of the upper and middle cross

section and middle and lower cross section respectively.

After neglecting the second order terms and dividing by ox Eqg. (6) becomes:

M., +M,, +M_ =V, +V, +V +F .d +F .(d +d,) (7)
Differentiating Eq. (7) gives:

Ma,xx + Mb,xx + Mc,xx =Va,x +Vb,x +Vc,x + I:b,xx'dl + Fc,xx (dl + d2) (8)
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Substituting Eq.(4) into Eq.(8) gives:
M, +* M, +M  —F d —F . .(d,+d,)=p+P, 9)

Taking moments about the origin of coordinate in the middle layer gives:
M, +M, +M, =V, +V, +V, )X+ (V, + 6V, +éVc).%+5Fa.dl —6F. d, (10)

After neglecting the second order terms and dividing by ox Eg. (10) becomes:

M, ,+M  +M_ =V +V, +V -F d +F d, (112)
Differentiating Eq.(11) gives:

M, + My +M_ =V, +V, +V  —F, 4 +F.d, (12)
Substituting Eq.(4) into (12) gives:

Ma,xx+Mb,xx+Mc,xx+Fa,xx-d1—F d,=p+P, (13)

For equilibrium of the composite element, shown in Fig. (2), in the x-direction givses:

(oF, +F,)+(cF, +F,)+(F, +F)—(F, +F, +F.)=0 (14)
oF, +oF, +oF, =0 (15)
Dividing Eq.(15) by &k gives:

Fox+F+F,=0 (16)

Egs. (9), (13), and (16) are the three basic equilibrium equations required for the complete
solution.

3.3 Compatibility
Assuming plane sections within each material remain plane, the total displacement of
the upper layer in the x-direction at the interface, denoted by U ., is given by:

ati !
U ati = ua - Zai 'Wa,x (17)

In which z,; is the z-coordinate of the interface relative to the local x-z axes and, u, and
w, are the displacements of the upper layer in the x and z direction. Similarly for the other
two layers:

Ui = Up = Zp; Wy (18)
Ucti = uc - Zci 'Wc,x (19)
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The slip, U,,, at the interface between the first two layers is denoted as the relative
displacement in the x-direction of initially adjacent particles, as shown in Fig.(2). Hence:

Uab =U _Ubti (20)

ati

And between the lower two layers:

U, =U,,-Uyg, (21)
Combining Equations (17), (18), (19), (20) and (21) gives:

Uy =W, —z3wW,,)— U, —Z,;W,,) (22)
Uy =W, —Z;:W,,)— (U, —Z45.W,,) (23)

If the shear stiffness of the joint per unit length between the upper two layers, denoted by kg,
the shear force per unit length at the interface g, is given by:

Oy =Ky Uy (24)
The shear force per unit length at the interface of the lower layers, q,, is given by:

q, =k, U, (25)
Considering the equilibrium of the upper layer in the x-direction gives:

Fox =0, =ky Uy, (26)

Considering the equilibrium of the middle layer in the x-direction gives:

Fb,x =0, —-0q (27)
I:b,x = ksZ'U bc — ksl u ab (28)
Fa,x + Fb,x = qz = ksZ'U bc (29)

Substituting for U, from Eqg. (22) into (26) gives:
Fa,x - ksl[(ua - Zai 'Wa,x) - (ub - Zbi 'Wb,x)] =0 (30)
Substituting for U, from Eq. (23) into (29) gives:

Fax + Fox — ksZ[(ub - Zbi 'Wb,x) - (uc - Zci 'Wc,x)] =0 (31)

a,x b,x
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The separation at the interface between the first upper layers, w,, is the relative displacement
in the z-direction of initially adjacent, as shown in Fig.(2) is given by:

W, =W, —-W, (32)

a

The separation at the interface between the two lower layers, w,, is given by:
ch =W, —W, (33)

If P, denotes the normal force per unit length at the interface equilibrium at the two upper
layers element in the z-direction it is given by:

Va,x :pi +pa+Pl+Ps (34)

If P, denotes the normal force per unit length at the interface equilibrium at the lower two
layers element in the z-direction is given by:

Vix =P, =P +p, (35)
V x+Vb,x:P2+pb+pa+pi +Ps (36)

a,

Consider the moment equilibrium of the upper layer element about the origin of coordinates
which gives:

Va = Ma,x +q1'zai
(37)

Consider the moment equilibrium of the second layer element about the origin of coordinates
which gives:

Vo =My, +0,.2 — 0,2 (38)
Differentiating Egs. (37) and (38) gives:

Va,x = I\/Ia,xx +q1,x'zai
(39)

Vo =My + 055025 =012y =My +F .2, (40)
Differentiating Egs. (26) and (29) with respect to x gives:

Fa,x = ql,x (41)
Fa,xx + I:b,xx = qz,x (42)
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Substituting Egs. (34) and (36) into (39) and (40) gives:

Pl = Ma,xx +ql,x'zai _(pi + Ps +pa) (43)
Va,x +Vb,x = Ma,xx + Mb,xx T 0,x-Zpi — Oy x-Zpi T 0ux-Zai (44)
P, =M, My + s Zoi —Oyy-Zoi +hy-Zai — (0 + 00 +9,) — P (45)

Substituting Eq. (41) into (42) gives:
Pl = IVla,xx + I:a,xx'zai _(pi + Ps +pa) (46)

Substituting Eq. (42) into (45) gives:

P,=M_ , +M, o +F o Zai +Fo-Zo — (0 +P. + o, +p,) 47)
If the normal stiffness of the joint per unit length between the upper layers, is denoted by k,,,
then:

RL = knl'\Nba = knl'(wb _Wa) (48)

If the normal stiffness of the joint per unit length between the lower layers, is denoted by k., ,
then:

I32 = kn2 '\Ncb = kn2'(Wc _Wb) (49)

Substituting Eq. (48) into Eq. (46) gives:
Ma,xx +Fa,xx'zai _knl(Wb _Wa):pi +10a+Ps (50)

Substituting Eq. (49) into Eq. (47) and combining with Eq. (49) gives:

My + FonZoi —Kno (W, =W,) + Ky (W, —w,) = p, (51)

Egs.(30), (31) and (51) are the three basic compatibility equations required for a complete
solution.

BASIC DIFFERENTIAL EQUATIONS
From the analytical model, the six independent differential equations (equilibrium and
compatibility), may be expressed in terms of  displacement variables, u,,w,,u,,W,,u,

and w, as follows :Assuming plane sections within each material remain plane, the axial
strain ¢ can be expressed in terms of displacements u ,w relative to the local x and z —axes,
which are assumed to pass through the centroid of the three materials. Hence:

Eq = Uat,x = Ua,x - Za'Wa,xx (52)
& =Upx =Upy — 2, W, (53)
& = Uct,x = Uc,x - Zc 'Wc,xx (54)
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In which subscripts a, b and ¢ denotes the layers, subscripts x denotes differentiation and z
the distance form the origin of coordinates to the limits of the layers.
Stresses, now can be related to strain via the materials properties E,,E, andE. For linear

elastic materials E,,E, and E_ are constants, but for nonlinear elastic and elasto-plastic
materials, E,,E,and E_are functions of strain.

The free strain due to shrinkage, temperature ,etc, are denoted by &, , while the strain induced
during the construction sequence, are denoted by ¢,. Hence, if u and w are assumed
exclude the displacements corresponding, to ¢, and ¢, , the stresses in the layers are given by:

O, = Ea (ua,x - Za'Wa,xx &, _‘gfa) (55)
oy =Ep Uy =2y W, 5 +&, —&4,) (56)
O, = Ec (uc,x - Zc 'Wc,xx +grc _gfc) (57)

The axial forces, F,,F and F_, and moments M_,M,, and M_ are obtained by integrating
the stresses, multiplying by the appropriate lever arms, z_,z,andz_, in the case of moments
over the cross section area of each layer which denoted by A,, A, and A_. Hence:

F,=[o.dA, (58)
F, = [o,dA, (59)
F,=[o.dA (60)
M, =—[o,2,dA, (61)
M, = —I 0,2, .dA, (62)
M, = —IO‘C.ZC.dAt (63)

Substituting Egs. (55), (56), (57) into Egs. (58) to (63) gives:

F, = I Eo-(Uay = ZaW, o + &1 — €12 )AA, (64
Fy = [ Ey(Uy, =2y Wy o + 5, — 57 )0A, )
Fo = [ B, — 2o W, , +6, — 5, )dA )
M, = —I Eo-(Uoy —Z, W, o + &1 — E1a)-Z0-0A, (67
M, = —j Ep.(Upy — Zy Wy o + & — Eq)-Zp OA (68)
M, = —I Eo(Uey = Zo-W, o + & — 1) 2o 0A, (69)

IF E,,E,,and E, are constants, integration of Egs. (64) to (69) gives:

Fa = Ea'Aa'ua,x + Ea'(Era _Efa) (70)
F =E, AU, +E (6, — &) (71)
Fc = EC'A\:'uc,x + Ec'(grc _Efc) (72)
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M, = E,.l,W, . (73)
M, = Ep.lyW, (74)
M, = E..l,.W, (75)

in which, 1,,1,, and I, are the second moments of area for the layers and & is the

integration of the strain function over the cross section area of the corresponding materials.
The following are the six governing equations derived for the three layers composite beam:

M+ My +M  —F d —F .(d,+d,)=p+P, (76)
Mt My +M  +F o d, —F ,d,=p+P, (77)
Fox+tF,+F,=0 (78)
Fa,x - ksl[(ua —Zy -Wa,x) - (Ub —Zy -Wb,x)] =0 (79)
Fax T Fox —Kea[(Uy — 250, ) = (U — 25w, )] =0 (80)
My + FoeZoi = Koo (W =Wy ) + Koy (W, —W,) = p, (81)

After substituting Eqgs. from (70) to (75) into Egs. from (76) to (81) gives:

Bl W, o + Ep by Wy oo + Egcl oW oo —Ep Aj Uy o =B (8 =) o0y —(dy +d,).EC AU

—E (0, +0,)(E —E) o =P+ P,
(82)

Eala W, o + Eply Wy (o + Eclo W, o +ELAD U, o +E (8, —&,) 0,
—d,.E..AL U« —E.d, (8, — &) o = o+ P,

(83)

Ea'Aa'ua,xx + Ea'(Era _Efa),x + Eb'Ab'ub,xx + Eb (Erb _Efb),x + Ec'Ac'uc,xx + Ec'(grc _Efc),x =0
(84)

Ea'Aa'ua,xx + Ea'(Era - Efa),x - ksz[(ub —Zy 'Wb,x) - (uc —Z 'Wc,x)] =0 (85)

Ea'Aa'ua,xx + Ea'(Era - Efa),x + Eb'Ab'ub,xx + Eb (Erb - Efb),x - ksz[(ub = Zy; 'Wb,x) - (uc —Z 'Wc,x)] =0

(86)
Ep 1o Wo oo + B Ay Up - Zpi — Kog o (W, —Wp) + Koy (W, —W,) = o, (87)

5.NUMERICAL SOLUTIONS
Egs. (82) o (87) contain derivatives of third order in u and fourth order in w, which

can be expressed in finite (central) difference form using five node points as shown in
Fig.(3), for example, the derivatives of w at node n can be expressed as:

_ Whia — Wy (88)

Ynx 2.AX
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Wi — 2'Wn +W,,

W, o = o (89)
- 2. 2. —

Wn’xxx — Wn+2 Wn;.;_xs anl Wn—2 (90)
-4, 6.w, —4.

Wn,xxxx — Wn+2 Wn+1 + A;/(\in Wn—l + Wn—2 (91)

in which Ax is the spacing of nodes.

After expressing Eqgs. (82) to (87) in finite difference form, the complete solution
system of algebraic equations, six degree of freedom per node, can be solved for the
unknown displacements at the nodes, and its two external nodes are required at each end of
the beam. In general, since the model is done for uniform distribution load and to specify the
boundary conditions, the point load P can be idealized as a uniform distribution load

p= %x’ applied over a single node spacing.

BOUNDARY CONDITIONS

Solution of the resulting set of algebraic equations requires the specification of
boundary conditions. In general, since the equations contains a derivative of fourth order they
require two external nodes to specify the boundary conditions at each end. However, if each
external node is assigned six degrees of freedom per node, then twelve boundary conditions
required for each end of the beam must be specified:

w, =0 at x=0 when x=L (92)
W, =0 at x=0 when x=L (93)
W, =0 at x=0 when x=L (94)
W, =0 at x=0 when x=L (95)
u, =0 at x=0 (96)
Ug, = at x=0 (97)
U,, =0 at x=0 when x=L (98)
Uy, =0 at x=0 when x=L (99)
V,+V,+V,=R, at x=0 (100)
V,+V, +V, =R, at x=L (101)
Ugox =0 at x=0 when x=L (102)
Up ooc =0 at x=0 when x=L (103)
Ug o =0 att x=0 when x=L (104)
Uy, =0 at x=0 when x=L (105)

in which,R and R, are the reactions at the supports, Egs.(100) and (101) express the

conditions that the sum of the shear forces in the layers are equal to the support reaction
R,and R,. And V,,V, and V_ can be expressed in terms of displacements derivatives as

follows: consider moment equilibrium of the upper layer about the origin of coordinate,
Fig.(2), gives:

- 108 -



Anbar Journal for Engineering Sciences © AJES,Vol.1,No.2 / 2008

Va = Ma,x + ql'zai (106)
Substituting for g, from equation (26) into equation (106) gives:

V,=M, +F,, .z (107)

Similarly, for the middle layer:
Vi =My +Fy .2, (108)
And for the lower layer:

V,=M,, +F,,.z (109)

X c,x*“ci

Substituting the forces and moments in terms of derivatives from Egs.(70) to (75) into Egs.
(107) to (109), gives:

V, =E, 0, W, +E, Az, +E, 2,5, —E1) (110)
Vo = Eply Wy oo + By A2y +E .25 (6, =€) (111)
V, =E. 0 W, +E. A2y +E, 24 (5, —5), (112)

And for the latest boundary conditions, substituting Eq. (22) into (105) gives:
Uab,x = (ua,x - Zai 'Wa,>o<) - (ub,x - Zbi 'Wb,xx) (113)

But Eq. (113) into a finite difference forms, gives:

1 z 1
F (uan+1 - 2.uan + uan—l) - 2 AX3 ('Wan-v-z o Z'Wan—l + 2'Wan—1 - Wan—z ) - F(ubna—l - 2'ubn + ubn—l)
1
+ A (W,  —2w, +2w, -w, )=0

(114)

The details about the six governing equations and the twenty four boundary
conditions, after substituting the finite difference form,
It is noted that the free strain due to shrinkage and temperature, etc and strain induced
during construction sequence are neglected.
The main equations after substituting the finite difference form become:
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E,.| E, .l
ﬁ w, —4w, +6w, —4w, +w, )+ Ab =
X n+2w n+: n n-—: n— X
E..l, E,.A,.d

7 (w, —4.wcn+1 + 6.ch —4.ch71 +ch72)— A

E..A(d; +d,)

(Wbm - 4.Wb+n1 + 6.an

— 5 (u,

- 4-an,1 +W, | )+

n+2

—2u, +2Uu, —ubH)— E, (& =€) o —

(ucn+2 - 2u Cn+1

2.A%°
+ 2'ucn,1 _ucnfz)_ Ec'(dl + dz)'(Erc _Efc) =p+ Ps
(115)
E,.l, E, .l
A w, , —4w, +6w, —4w, +w, )+ (W,  —4w, +6.w,
E,.I A.d
4w, +w, )+—=—"S%(w, —4w,_ +6w, —4w,  +w, )+——21 E,. L
bn—l bn—2 ) AX4 ( Cni2 Cni1 Cn Cha Ch2 ) 2 AX ( any2
_ _ E d,
—2u, +2u, —U, )+E,0,.(6,—8p) 2?3 u , -
+2U, )-E.d,.(5,.—-€.)=p+P
(116)
E A. E, .
ZXA;"‘ (u,  —2u, +u, )+E.(6,-8,) o+ Abxeb (U, —2U, +U, )
E..
+ Eb'(grb _Efb),x +AC—XA2\C(UCM1 - 2'ucn + uc,H) - Ec'(Erc _Efc) =0
117)
E.. Ky Zyi
At (u, —-2u, +u, )+E,.(¢,-2,),—k,u, +—2"2(w,  -w, )+
2 an. a, a,q a ra fa/ x s1™Va, i an_1
AX 2.AX
. (118)
+Kgy Uy, _ZSl—At))(l( b~ W, )=0
E,A,. E,.
ZXA;’ (U, —2u, +u, J+E(6,-8n) .+ Abxéb (U, —2u, +U, )
FE (B, —Fy), —k,u + 2y w yek,u, — Rl —w =0
b*\“rb fb/,x s2 b, 2 AX bn+1 bn_1 s27¢, 2 AX Cnil Cn1
(119)
E, .l E,.A.Z,
Ab.x4b .[an+2 _4.Wb+n1 + 6an _4.an—1 +an2]_%[ bn+2 ' bn+1 + 2.ubnfl _ubnfz]
an'(ch _an ) + an'(an - Wan) = Pb
(120)

4. APPLICATIONS

The developed analysis presented above takes into consideration interlayer slip and
has been applied to previous examples tested by other researchers.

A computer program has been written to solve the set of differential equations using
finite difference method . A case study is considered to study the effect of blast loads on
composite multi-layer simply supported beam.
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5. ANALYSIS AND DISCUSSION

As noted previously, the method of analysis developed was investigated under a
certain case study. An analytical study is carried out for a multi-layer composite simply
supported beam, the dimensions of the beam are shown in Fig.(4). The loads and structural
details are shown in Table(1) based on formula according to TM-855-1to calculate the peak
over pressure and duration. The material properties of steel, concrete and shear connections
are presented in Table(2).

Fig.(5) shows the time- deflection relationship for the three layer simply supported
beam during short time of exposure to blast load, the figure shows a difference in values of
deflection for the layers. The blast load is applied directly to the upper layer and the
deflection is large compared with other layers; in fact the deflection of the interior layer is
small and can be used to protect the inside persons and equipment from other explosions
effects such as penetration and crater.

Fig.(6) shows the time- deflection relationship for three layer simply supported beam
during short time of exposure to blast load, the figure shows a difference in values of
deflection for the layers.

6. CONCLUSIONS
The main conclusions that can summarized is as follow:

1 - Explosions have different effects including blast, penetrations and fragmentation. The
blast is the main effect which hits the structure in short duration. Multi —layer composite
construction is the best type of constructions to resist the blast loading ; according to this ,
multi-layer composite construction is used for air-craft and marine industries.

2 - A special case of multi-layered composite construction, is steel - concrete -steel
sandwich beams (SCSS) or double skin composite construction (DSC). This is a relatively
new and innovative form of construction, consisting mainly of a layer of plain concrete
sandwiched between two layers of relatively thin steel plates connected to the concrete by
welded stud connectors.

3 - Analysis of composite beam under blast load , taking in consideration vertical and
horizontal displacements, leads to six differential equations , the load is taken as a function of
time.

4 - A case study was considered to calculate the slip and deflection for the three layer
composite simply supported beam.
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NOTATION
a, b, and c= Subscript denotes different layers.
A,, A and A = Cross-sectional area of different layers.

A = Effective width of concrete slab.
d,and d,=Distance between the centroids of successive layers.

E, = Modulus of elasticity of concrete.

E, = Modulus of elasticity of steel.

E,,E,and E =Modulus of elasticity of different layers .

F, ,F, and F,=The axial forces in different layers.

h,, h, and h, = Thickness of different layers.

I, lI,and I, =Second moment of area for the layer a.

I, and 1, = Moment of inertia of concrete slab and steel about its own centroid.

k,, and k, =Shear stiffness of the joint per unit length between successive layers.
k,,and k.,=Normal stiffness of the joint per unit length between successive layers.
L =span length.

M= External applied moment.

M,, M, and M, =Moment for layer a.

P=Point load.
P, and P, =Normal force per unit length at the upper and lower interface.

p;=Live load.

p =Live load and dead load.

P. » ppand p = Distributed self-weight of layer a.

R,, R,=Reaction at the right and the left supports.

U, and U, = Slip between upper and lower layers.

u,, u,and u,=Displacements of the different layers in the x -direction.
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W=weight of charge in Ib.
w,, w, and w,=Displacements of the layer a, b and ¢ in the z -direction.

W,,, Wy, =Separation at the interface between the upper and lower layers.

X.= Subscript denote differentiation.
X=distance from charge in ft

Z=scale factor =

z

ai!

Wwifs

"

&, =Free strain due to shrinkage, temperature etc.

&, = Strain induced during the construction sequence.

£ =Integration of strain function over cross section area of the material.
&,, &and g =Strain in layers a, b and c.

o,, o,and o, =Stress in layers a, b and c.
Ax =Spacing between nodes.

z,;and z_, =Z-coordinate of interface relative to local x-z axes in layers a, b and c.

Table(1) : Details of charge weight, peak over pressure and duration

Case | TNT charge weight Distance from the | Peak over pressure | Duration
No. charge
kg Ib m ft MPa psi sec
1 2.5 5.434 1.5 4.95 1.285 187.56 | 0.00106
2 5.0 11.2 2.5 8.25 0.576 | 84.0875 | 0.000905

Table(2) : Properties of material

Compressive strength | Modulus of elasticity GPa | Tensile strength
MPa MPa
Concrete beam 25 20 2.05
steel Yield stress MPa Modulus of elasticity GPa Elongation%
Plate 290 205 24
Headed studs 285 203 22
Reinforcing bar 290 202 20
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Figure (5): Time-deflection relationship for beam layers under blast load
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Figure (6): Time-slip relationship for beam layers under blast load
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