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ABSTRACT

In this study an attempt is made to develop a method of analysis dealing with a multi-
layer composite continuous beam , for linear material and shear connector behavior in which the
dip (horizontal displacement) and uplift force (vertical displacement) are taken into
consideration. The cross-sectional area for the beam consists of three layers varying in thickness
and shear tiffness. The analysis is based on a approach presented by Robertq1], basically for
two layer smply supported beam, under uniform and point loads , which takes into consideration
horizontal and vertical displacement in interfaces. The analysis led to a set of eight differential
equations containing derivatives of the fourth and third order. A program based on the present
analysis is built using finite difference method using boundary conditions. A comparison
between the present analytical solution and previous studies shows close agreement. Continuous
composite beams are very important element in construction of high rise buildings , multi-story
frames and bridges, due to great advantages that can be obtained by using this sort of structural
elements, such as reducing the beam moments, suitable reduction in deflections. The model dedls
with continuous beam consisting from three layers as a cross-sectiona area with inter-layer dlip.
The cross-sectional area consist of composite material including intermediate layer from
concrete and an upper and lower material with high strength in tension and compression ( i.e.
steel plates or steel beams)
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1. INTRODUCTION

Composite construction has been widely used for building construction over the past 60
years, developed initialy for most structural elements due to the advantages provided by such
types of elements. A perfect connection between the components of composite elements (mostly
steel, concrete and timber) exists only theoretically. Experimental investigation has shown that
significant dip occurs at the interface between these components, even when a large number of
connectors are proved. Some types of connectors give a very rigid connection, others are more
deformable in which a certain dip is inevitable. This problem is more complicated when fewer
connectors than the number required for full interaction are used. The modification in the
behavior of a composite beam by the presence of dip was illustrated by analysis conducted by
many researchers. These analyses led to differential equations (number of these equations
depending on the degree of freedom) that are to be solved fresh for each type of loading and the
variation in dimensions or properties of beams. Multi-layer composite beam (aso called
laminated beam structures) are very important structures and relatively new and are used not in
civil engineering only but in many industries such as aircraft and marine engineering. The first
interaction theory that takes account of dip effects was initially formulated by Newmark [2],
based on elastic analysis of composite beams assuming linear material and shear connector
behavior.
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Adekola [3] formulated another equations , two equation , based on interaction theory,
which takes account of dip, uplift and friction effect. Each component of a composite beam was
assumed to behave separately in accordance with simple bending theory. In addition it was
assumed that the rate of change of the axial force is directly proportiona to dip, and uplift force
is directly proportional to differential deflection. The equilibrium and compatibility relations lead
to two differential equations of fourth order connecting the uplift tension arising from differential
deflections of the two components of the composite beam with the axial force within each of the
components. The equations contain derivatives of fourth order in uplift forces and second order
in axial forces, and they were solved by finite difference method, in which they were rearranged
such that unknowns exist at each node point of a smply supported composite beam. Obtaining
the complete solution for the axial forcesand uplift forces, deflections can then be determined.

Using the same element presented by Newmark, Johnson [4] in 1975 proposed a partia
interaction theory for smply supported beams, in which the analysis was based on elastic theory.
The composite beam was assumed to be linear elastic material. The discrete connection was
assumed to be smeared along the beam, so that the connector strength and stiffness can be quoted
per unit length of beam. In addition, the connector behavior was assumed linearly elastic. The
effects of uplift were neglected, i.e. no gap between the two components of the composite beam
exists and the same curvatures are used for them. Equations deduced from equilibrium, elasticity
and compatibility were so arranged that a second order differential equation relating the dip at
the interface to the distance along the beam were obtained. The solution of the equation gives the
dip distribution aong the beam, back substitution into the equilibrium and compatibility
eguations get the curvature distribution deflections and stresses along the beam. Both of the two
approaches analyze two layers of composite beam with partia interaction and gives single,
second order explicit differential equation. This equation must be solved for each type of
loading to have the complete solution.

Roberts [1] presented an approach for the analysis of composite beam with partial
interaction, in which the basic equilibrium and compatibility equations were formulated in terms
of four independent variables, i.e. the axial displacements of the concrete and steel and the
deflections of the two layers. Linear elastic materials and shear connector behavior were
assumed with the concrete remaining uncracked, and both the dip and separation at the interface
were incorporated. The analysis resulted in four differential equations, which contain derivatives
of third order in axia displacements and fourth order in deflections. Numerical solutions of the
basic equations were obtained by expressing them in finite difference form and the complete
system of the equations, i.e. four per node, was solved for the unknown displacements and
deflections. An application of the theory was made in which the behavior of a smply supported
composite beam under service loading was studied. The normal stiffness of the shear connection
per unit length was assumed infinite, i.e. no separation occurs and equal curvatures of the
interaction components exist. The shear stiffness of the shear connections per unit length were
varied such that uniform, triangular and discontinuous distribution of shear connectors were
obtained. The basic equilibrium and compatibility equations were formulated in terms of four
independent variables, i.e. the axial displacements and deflections of the layers, Linear elastic
materials and shear connector behavior was assumed with the concrete remaining uncracked, and
both the dip and separation at the interface were incorporated. The analysis resulted in four
differential equations, which contain derivatives of third order in axial displacements and fourth
order in deflections.
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The previous approaches were devoted to two layer smply supported beam . In case of
multi-layer continuous composite beam a certain modification must be taken in consideration.

2. THEORY

The analysis of composite continuous beam, consisting of three layers were considered.
The cross-sectiona area consisting of two layers of stedl plates bounded a layer of reinforced
concrete. There is a problem of negative moment occurs at the supports, so, the concrete layer
is assumed crack, as shownin Fig. (1) .

2.1 Assumptions

The basic assumptions of conventional beam theory were used, where plane sections are
assumed to remain plane. Also, the connection was assumed to have negligible thickness and
possesses finite normal and tangentia stiffness.

2.2 Equilibrium .

An element of a composite of three layers, length (dx), shown in Figure (1), is subjected
to moments, (M), shear forces, (V), and axial forces, (F), subscripts a, b, and ¢ denote, three
layers from upper to lower layer, and the local x-z axes pass through the centroids of the
materials. The beam is subjected to a uniform distributed load The equilibrium requirements led
to the following equations:

Vg +aV, +1Vg, =1d, 1
Dividing Eq. (1) by (d,) and taking limitsas (d, ) tendsto zero, gives:

V

L,

X +Vr,x +Vspz,x =r (2)

Where subscripts x denotes differentiation. For live load and dead load, p isequal to :
F=rgy+r.+rg, 3
wherer ., r o,and r  are the distributed self of the upper steel plate, lower steel plates and

concrete layer respectively.
Taking moment about the origin of coordinates in the first layer , gives:

dm - +dM, +dM 92 = (\/Spl +V, +Vsp2)dx +

@
(Vs +0V, +0V,) S+ by +0F (0 +y)

Where h, is the distance between the centroids of the steel plate (upper layer ) and steel bars, h,
is the distance between the centroids of the lower steel plate and steel bars. After neglecting the
second order terms and dividing by d,, Eq.(4) becomes:

M X +Mr,x +Mspz,x :Vspl +Vr +Vspz +Fr,x'h1+Fspz,x(h1+h2) (5)

L,
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Differentiating EQ. ( 5) gives:

M sp1,xx + M r,Xx + M P2,XX :Vspl,x +Vr,x +Vsp2,x + I:rxxhl + Fspz,xx (hl + hz) (6)

and substituting Eq. (1) into Eq. (2) gives:

Mspl,xx+Mr,xx+MSpZ,XX- Fr,xx'hl' Fspz,xx(h1+h2):r (7)
I:spl,x + I:r,x + Fspz,x = O (8)

Taking moment about the origin of coordinate in the second layer, gives:
dM g, +dM +dM, = (V, +V, +V,)d, +

d, 9)
(Vg +aV, +dV, 2)7 - dFg,.h +dFg,.h,

P

After neglecting the second order terms and dividing by d,, Eq. (9) becomes:

M 1,x +M r,x +M P2,X :Vspl +Vr +Vspz - FspZ'hl + Fspz,x'hz (10)

Differentiating Eq. ( 10) gives:

Mo ¥ Mo * Mg =Varx TVix ¥ Vaox - Foox + Fgouh, (1)
and substituting Eq. (1) into Eq. (11) gives:

Mo ¥ M+ Mg+ Fornchi = Foowho =7 (12)

Eqgs.(7),(8)and(12)are the three basic equilibrium equations required for the solution.

2.3 Compatibility

Assuming plane sections within each material remain plane, the total displacement of
each layer at the interface denoted by U, , isgiven by :

u splti = uspl - Zspli 'Wspl,x (13)
inwhich z_,; isthe z-coordinate of the interface relative to the local x-z axes, ug, and w,

are the displacement of the concrete in the x and z direction.
Similarly for the steel bars and lower steel plate.

Urti =UuU - Z; 'Wr,x (14)

U sp2ti = uspz - Zspzi 'Wspz,x (15)
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The dlip , Ug,,, at the interface between the upper two layers is denoted as the relative
displacement in the x-direction of initially adjacent particles, hence:

Usplr = usp]li - Uy (16)
Urspz =Uy - uspZti (17)

combining Egs. ( 13), (14), (15) (16) and (17) gives:

Usplr = (uspl - Zspli 'Wspl,x) - (ur - Z 'Wr,x) (18)
Urspz = (ur - Z 'Wr,x) - (uspz - Zspzi 'Wspz,x) (19)

if the shear stiffness of the joint per unit length is denoted by k, the shear force per unit length
a theinterfaces g, and q, is:

G =Kol g (20)
4, =K U (21)

and considering the equilibrium of the upper layer in the x-direction gives:

Forx =G (22)
I:r,x =0;-Q, (23)
Fo2x =~ 0 (24)
substituting for U, and U ,, from Eq. (18) and (19) givers:

I:spl,x - ksl[(uspl - Zspli 'Wspl,x) - (ur - ZWr, X)] =0 (25)

I:r,x + ksl[(uspl - Zsp]j 'Wspl,x) - (ur - Zywr, X)]

(26)
- ksz[(ur - 4w, ) - (uspz - ZspZ'Wspz)] =0

The separation at the interface between any two layers, w,,, and w,g,, istherelative

displacement in the z-direction of initially adjacent particlesi.e:

Wrspl =W, - Wspl (27)
Wser = Wspz - W

If P, and P, denotesthe normal force per unit length at the interfaces, equilibrium of the upper
steel plate inthe z-direction gives; (as shown in Fig.(1-c)):
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Vspl,x:ri+rspl+Pl (29)
In the second layer

Vr,x:rr+rc+P2_Pl (30)
P2 P, (31)

Considering the moment equilibrium of the upper layer about the origin of coordinates gives:

Vspl = M spl,x + ql'zspli (32)
Vr = M r,x + ql'zri + qZ'Zri (33)
Vspz = M P2,X + qZ'Zspzi (34)

Hence, combining Egs. (22), (24) , (29) ,(31) , (32) and (33) gives:

Voirx = Mg+ Oix-Zan (35
Vi, =M, +0,,.Z; +0,,.Z; (36)
Voox =M go 0o Zai (37)
i+ g v B =My o+ Fora-Zoo (38
P =Mgio + ForncZoa - (i 1 ¢) (39
P-B=M, - FooxZi T FoiuZi - T (40)
M2 Po =M g + UsyZooi (41)
P, =- Mo t FoomZopa T g2 (42)

if the normal stiffness of the joint per unit length is denoted by k , and k., , then:

Pl = knl'Wrspl = knl(Wr - Wspl) (43)
PZ = an'Wser = kn2 (Wspz - Wr) (44)
- oY -
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substituting for P, and P, from Eqg. (40) into Eq. (43) and (44) gives:

an(WspZ - Wr)' knl(Wr - Wspl) = IVlr,xx - F Z; +F Z;- I, (45)

P2, XX i P XX i

M rXx I:spz,xx'zri + I:spl,xx'zri knz(WspZ - Wr) - knl(Wr - Wspl) =re (46)

Egs. (25) , ( 26) and (46) are the three basic compatibility equations required for the complete
solution.

3. BASIC DIFFERETIAL EQUATIONS

From the analytical model, the six independent differential equations (equilibrium and
compatibility), may be expressed in terms of displacement variables, (Ug,,Wgy,,U, ,W,,Ug,,) and
(Wg,,) as follows: Assuming plane sections within each material remain plane, the axial strain
(e) can be expressed in terms of displacements (u ,w ) relative to the local x and z —axes,

which are assumed to pass through the centroid of the three materials. Hence:

espl = Usp]l,x = Uspl,x - Zspl'Wspl,xx (47)
er = Urt,x =U rx Z 'Wr,xx (48)
espz = Usp2t,x = Uspz,x - ZspZ'Wspz,xx (49)

These subscripts spl, r and sp2 denote the upper steel plate, steel bars and lower steel
plats. Subscript (x), denotes differentiation and (z) the distance from the origin of coordinates to
the limits of the layers.

Stresses now can be related to strain viathe material properties ( E

linear elastic materials (E
plastic materials, (Egy,
temperature, etc, are denoted by (e, ), while the strain induced during the construction segquence,
are denoted by (e, ). Hence, if (u) and (w ) are assumed to exclude the displacements

o1 Er) and (Eg,, ). For
o1 Er) and (Eg,) are constants, but for non-linear elastic and elasto-
E,) and (E,,,) are functions of strain. The free strain due to shrinkage,

corresponding, to (e, ) and (e, ), the stresses in the layers are given by:

S 1 = Espl(uspl,x - Zspl'Wspl,xx +erspl - efspl) (50)
S i Er (ur,x - Z 'Wr,xx +err - efr) (51)
S 2 = Espz (uspz,x - ZspZ'Wspz,xx +erspz - efspz) (52)

The axial forces, (Fy,,F ) and (Fg,), and moments (Mg,,M,), and (M,,) are

z,) and

sp1s

obtained by integrating the stresses, multiplying by the appropriate lever arms, (zg,,
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(Z4,), inthe case of moments over the cross section area of each layer denoted by (A, A ) and

(A,,)- Hence:

For = (S g 0Ay (53)
F. =cs,.dA (59)
Foo = (S 92-0A,, (55)
Mgr =- (S gn-Zpn-dA, (56)
M, =-(s,.z..dA (57)
Mgz == (S 92-Zgp2-0A,, (58)

Substituting Egs. (50) to (52) into Eq.s (53) to (58) gives:

For = CEpr-Uspix = Zen Wepn e + €1 = € 1) dAyg (59)
Fr = CEr .(Uryx - Zr 'WI’,XX +err - efr )dA (60)
Fe2 = (‘ESPZ'(USPZX " Zyo W T €2 - efspz)dpgpz (61)
M spl = CEqu'(uqu,x - ZSpl'Wspl,xx +ersp1 - efspl)-zspl-dpgpl (62)
Mr =- (‘Er.(uryx- Z 'Wr,xx+err - efr)'zr dA (63)
M P2 =- (‘ESJZ'(USJZ,X - Zq)z 'WSJZ,XX +er$2 = equz).Zqu 'dAS)Z (64)

IF (Egy, E, ), and (Eg,, ) are constants, integration of Egs. (59) to (64) gives.

Fspl = Espl'A%pl'uspl,x + Espl'(e_rspl - éfspl) (65)
I:r = Er A\ 'ur,x + Er '(érr - e_fr) (66)
Fspz = EspZ'Aspz 'uspz,x + EspZ'(e_rspz - e_fspz) (67)
M o1 = Espl.l 1" Wep1 xx (68)
IVlr = Er'Ir'Wr,xx (69)
M 92 = Esz-l 2-Wep2 xx (70)

wherel,, |, and I, are the second moment of area of upper steel plate , steel bars and lower

steel plate respectively and €, isthe integral of the strain function over the cross-section area of
the corresponding material. After substituting Egs. (65) to (70) into the basic equilibrium and
compatibility Egs. (7), (8) ,(12) , (25), (26) and (46) gives:

Eqr-l 91 Wi rox F Bl t We oo ¥ Egpol 90 Wepo oo = MIE A U, o +

B s (71)
Er (err - efr),xx +(h1 + hz)'[ESpZ'AspZ'uspz,xxx + EspZ'(erspz - efspz),xx =T
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Espl'I spl'Wspl,xxxx + Er A r 'Wr,xxxx + EspZ'I 2 'Wspz,xxxx + hl[Espl'Aspl'uspl,xxx +

_ _ (72)
Espl(erspl - efspl),xx] - h2'[EspZ'A%p2'usp2,xxx - EspZ'(erspz - efspz),xx =T
Espl'A%pl'uspl,xx + Espl'(érspl - éfspl),x + Er A\ 'ur,xx + Er (érr - éfr ),x

~ ~ (73)

+ ESpZ'A%pZ'uspz,xx + EspZ'(erspz - efspz),x =0
Espl'A%pl'uspl,xx + Espl'(érspl - éfspl),x - ksl (74)
[(uspl - Zspli 'Wspl,x) - (uspl - Zspli 'Wspl,x)] =0
Er A\ 'ur,xx + Er '(érr - éfr ),x + ksl[(uspl - Zspli 'Wspl,x) - (ur - Zr 'Wr,.x)] (75)

- ksz[(ur -7 'Wr,x) - (uspz - Zspzi 'Wspz,x)] =0

Er A r 'Wr,xxxx -4y '[EerZ'A&)Z'uerz,xxx + EspZ'(érspz - éfspz),xx] +
Z; '[(E$1'A§Jl'u$l + Espl (érspl - éfspl),xx (76)
- kn2'(WspZ - Wr)+ knl(Wr - Wspl) =ry

4. NUMERICAL SOLUTION

Egs. (71) o (76) contain derivatives of third order in (u) and fourth order in (w), which
can be expressed in finite (central) difference form using five node points, for example, the
derivatives of (w) at node (n) can be expressed as.

W, = Wi = Wi (77)
’ 2.Dx
W, - 2W +W_ ,
w =" n L 78
=~ (79
- 2. + 2. -
Wn oo - Wn+2 Wn+l 3 Wn— 1 Wn— 2 (79)
’ 2.Dx
- 4, +6.w_- 4. +
Wnyxxxx - Wn+2 Wn+l 6 Wn Wn— 1 Wn— 2 (80)

Dx*

After expressing Egs. (71) to (76) in finite difference form, the complete solution system
of agebraic equations, six degrees of freedom per node, can be solved for the unknown
displacements at the nodes, and it required two external nodes at each end of the beam. In
general, since the model is done for uniform distribution load and to specify the boundary

conditions, the point load P can be idealized as a uniform distribution load r = IVDX’ applied
over single node spacing.
5. BOUNDARY CONDITIONS

Solution of the resulting set of algebraic equations requires the specification of boundary

conditions. In general, the equations contain a derivative of fourth order thus it required two
externa nodes to specify the boundary conditions at each end. However, if each external node is
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assigned six degree of freedom per node, then twelve boundary conditions are required for each
end of the beam and must be specified.

w, =0 a x=0 when x=L (82)
W, o = a x=0 when x=L (82
W, 0 = a x=0 when x=L (83)
W, =0 a x=0 when x=L (84)
u, = a x=0 (85)
U, =0 a x=L (86)
Uy, = a x=0 when x=L 87)
Up, =0 a x=0 when x= (88)
V,+V, +V, =R a x=0 (89)
V,+V, +V, =R a x=L (90)
Uy o = 0 a x=0 when x=L (91)
Up oo = 0 a x=0 when x=L (92
Ugox =0 a x=0 when x=L (93
Uypx=0 a x=0 when x=L (94)

Eq. (89) and (90) express the conditions that the sum of the shear forces in the layers are equal to
the support reaction R and R .

It is noted that the free strain due to shrinkage and temperature, etc and strain induced during
construction sequence are neglected .

6. COMPARISON WITH PREVOUS EXPERIMENTAL STUDIES

A computer program was written in FORTRAN language for the present model to solve
the six basic differential equations. The main parameters affecting the behavior of any composite
structure is dlip between layers, so the convergence in the built program is controlled by dip
which is taken as 0.001. The results obtained from this program were compared with other
results obtained from experimental researches. Experimentally , few works on the continuous
composite beams are found in literature as difficulties may arise during the testing of such beams
and due to the high cost of the preparation and construction of test beams. Teraskiewicz tested
two quarter-scale continuous composite beams as reported by Yam and Chapman [13]; they
compare the results obtained by their numerical solution with that obtained by Teraskiewicz's
tests, which show good agreement with the experimental values at different load levels.

7.YAM AND CHAPMAN’SEXAMPLE

A single continuous beam of two equal spans (336 cm) is subjected to concentrated load
of (74.2) kN at the middle of each span, Fig.(2). Due to symmetry , half of the continuous beam
is considered . the applied load is about (57 %) from the calculated ultimate capacity of the
beam, so that the behavior of the beam is within the elastic range. The material properties of the
beam are given in Table (1). All dimensions in the original reference are in imperia unit and
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have been presented here in Sl-unit system . Table (2) and Figure(4) shows the max. dip for
analytical and previous study.

Superscript (*) indicates assumed information as they are missing from the reference .
Fig. (4) shows the same beam after strengthening by upper steel plate attached to the concrete
dab ( assuming that the steel plate has the same width of the concrete dlab ) by using " shear
connectors ". The material property of steel plate is assumed to be the same as that for steel
beam.

8. CONCLUSIONS

Multi-layer composite continuous beams are very important element used in different
types of construction, the present model deal with three layers. The present model lead to the
following conclusions:

1. Composite multi-layered beam is relatively a new construction and can be used in many
industries.

2. Also, it can be used for strengthening a damaged or weaken construction.

3. The main problem is the relative movement between layers which is handled and
discussed in many researches.

4. The theory developed in the present study can be used in other branches of engineering
gpecially in mechanical engineering since the material properties and types of connectors
are not gpecified and the shear tiffness is assumed to be continuous over the whole
beam.

5. A theory of three layer composite continuous beams based on Roberts approach led to
six differential equations and a computer program to solve these equations is presented in
this paper.

6. A comparison with previous researches has been carried out to investigate the validity of
the analysis . The comparison gives a close agreement.

REFERENCE

[1] Roberts, T. M.,” Finite Difference Analysis of Composite Beams with Partial Interaction «,
Computers and Structures, Vol. 21, No. 3, 1985, pp.469-473

[2] Newmark, N.M., Siess, C.P. and Viest, I. M.,” Tests and Analysis of Composite Beams with
Incomplete Interaction «“, Proc.society for experimental stress analysis, Vol.9, No.1, 1951

[3] Adekola, A.O., “ Partial interaction between elasticity connected elements of a composite beams”.
International journal of solid and structures, Vol.4, No.11, 1968, pp.1125-1135

[4] Johnson, R.P., “ Composite Structures of Steel and Concrete ”, Vaol.1, Beams, Column, Frames,
Applications in Building, Crosby - Lockwood  Staples, London, 1975, pp. 210.

[5] Yam, Lioyd, C. P., “ Design of Composite Steel Concrete Structures “, Surry university press,
London, 1981, pp. 3,186.

[6] Johnson, R.P., “ Composite structures of steel and concrete, Vol.2, Beams, Column, Frames,
Applicationsin building ““, Crosby -Lockwood  Staples, London, 1975, pp. 210.

[7] Johnson, R.P And May, I. M. “ Partial interaction design of composite beams “. The structural
engineer, Val. 53, No.8, August 1975, pp.305- 311.

[8] Jasim, N. A., “ The Effect of Partia Interaction on Behavior of Composite Beams*, Ph.D. Thesis
University of Basrah, Oct. 1994.

- -

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

Anbar Journal for Engineering Sciences© AJESVol.1,No.2/ 2008

[9] Jasim, N. A. and Mohammed, A. A., “ Deflections of Composite Beams with Partial Shear
Connection “, The structure engineering, vol. 75, No.4, 1997, pp. 58-61.

[10] Jasim, N. A., “ Computation of Deflections for Continuous Composite  Beams with Partial
Interaction “, Proc. Inst. Civ. Engrs., Part2, Vol.59, August 1997, pp. 347-354.

[11] Goodman, J. R.,” Layered Beam Systems with Interlayer Slip “, Journal of Structural Division,
Vol.94, No.st11, November 1968.

[12] Goodman, J. R. and Popov, E.P. ,” Layered Wood Systems with Interlayer Slip ““, Wood science
Vol.1, No.3, 1969, pp. 148-158.

[13] Yam, L.C.P. and Chapman , J.C " Theinelastic baviour of continuous composite beams of steel and
concrete” Proc. Instn. Civ. Engrs, Vol.53, 1977 , pp 487-501.

NOTATION

spl, r, and sp2= Subscript denotes different layers, upper steel plate, steel bars and lower steel
plate respectively.

A = Cross-sectional area of different layers.

h, = Distance between the centroids of upper steel plate to the steel bars.

h, =Distance between the centroids of steel bars to lower steel plate.

E, = Modulus of elasticity of any layer.

F. =The axial forcesin layer (i).

I, =Second moment of area for the layer (i).

k, and k_, =Shear stiffness of the joint per unit length between successive layers.
k,and k ,=Normal stiffness of the joint per unit length between successive layers.
L = span length.

M= External applied moment.

M, =Moment for layer (i) .

P,and P, =Normal force per unit length at the upper and lower interface.
r,=Live load.

r =Live load and dead load.

r = Distributed self-weight of layer (i).

R , R =Reaction at the right and the left supports.

U, = Slip between layer (i) and ( j).

u, =Displacements of the layer (i) in the x -direction.

W= Point load.
w, =Displacements of the layer (i) in the z -direction.

w; =Separation at the interface between the layer (i) and ().

X.= Subscript denote differentiation.
z,, =Z-coordinate of interface relative to local x-z axesin layers a, b and c.

-y -
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e, =Free strain due to shrinkage, temperature etc.

e, = Strain induced during the construction sequence.

€ =Integration of strain function over cross section area of the material.
e =Strain in any layers.

s =Stressin any layers.

Dx =Spacing between nodes.

Table (1) The material properties of the beam

No. Material property value
1 | Concrete M odulus of elasticity Ec 21000
N / mny?
2 | Sted plate Modulus of elasticity Es 210000
Steel bar N / mny?
Steel reinforcement
3 | Shear connectors | Connector modulus N/mm? 1000
Stud connector(dia. *height)mm 16*100
Spacing (mm) 250
No. of bars'row 1

Table (2) Comparison between the numerical solution and Yam's example

No. M ethod of Numerical solution Yam's
solution example
1 No. of nodes 10 15 20
2 Max. dip (mm) 0.88 0.94 0.97 0.97
-y -
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a. element of athree layers composite beam
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C. Separation

Figure (1): Composite three layers element
(@) cross-section (b) slip (c) separation

-%e-

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

Anbar Journal for Engineering Sciences© AJESVol.1,No.2/ 2008

1680 mm 1680 mm

< J
‘ Vl
74.2 kN 74.2 kN ’l
A
—>
A
3360 mm 3360 mm
?4 J: J
° ° °
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Figure (2): (a) continuous composite beam before strengthening
(b) Section a-aat the beam
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(b) Section A-A at the beam

Figure (3): (&) continuous composite beam after strengthening
(b) Section A-A at the beam
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Figure (4): Comparison between analytical and previous study
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