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ABSTRACT 
The dynamics of wind turbine has to be studied carefully to avoid unpredictable outputs and to 
make sure that consistent and efficient power is supplied according to the load requirements. 
There is a great and urgent necessity to increase the efforts in the development of the researches 
of the renewable energy to decrease the dependency on the conventional ones. The objective of 
this research is to make a contribution to the ongoing wind turbine research in the area of 
modeling, which is the first step required for the control and implementation of wind turbines. 
The wind turbine transfer function is derived and its performance has been established using the 
MATHLAB Software. This research provided a different approach to wind turbine modeling 
methodology. The results of this research may be used in another step for completing the control 
process of the wind turbine. 

  
Key Words: Wind Turbine, Modeling, Performance, MATHLAB. 
 
 

 نمذجة واداء توربين ريحي
 وسام هاشم خليل

جامعة الانبار - كلية الهندسة  

 
  الخ.صة

غير المتوقعة ولضمان توافق ) المخرجات(من الضروري أن يتم العناية بدراسة ديناميكية التوربينات الريحية لتجنب النواتج  

ھناك حاجة كبيرة وملحة لزيادة الجھود المبذولة لتطوير البحوث في مجال الطاقة . وكفاءة القدرة المجھزة وفقاً لمتطلبات الحمل

الغرض من البحث ھو وضع اسھامة في تطوير بحوث التوربينات الريحية . تماد على الطاقات التقليديةالمتجددة وذلك لتقليل ا_ع

تم . والتي تعتبر الخطوة اkساسية اkولى الjزمة للسيطرة على عمل التوربينات الريحية (modeling)في مجال النمذجة 

يعطي ھذا . (MATHLAB)حي وتم حساب أدائه باستخدام للتوربين الري (transfer function)اشتقاق دالة ا_نتقال    

البحث مفھوم مختلف لطريقة نمذجة التوربين الريحي، النتائج التي تم الحصول عليھا في ھذا البحث يمكن استخدامھا في الخطوة 

   .التالية vكمال السيطرة على أداء التوربين الريحي
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1. INTRODUCTION     
The main sources of electrical power are burning power generators which use the energy from 
non-renewable fuels to rotate a shaft connected to an electric generator [7]. These systems have 
seen vast improvements in the areas of efficiency, emissions and controllability because they 
have always been the primary power sources. 

The oil crisis of 1973 caused an interest and great funds in wind energy and currently , with a 
great concern about the environment [1]. Its long lifespan, emission-free operation and low cost 
have made it more attractive compared to the other sources. It is also attractive for its job creation 
and the ease with which its technology can be transferred to developing countries. Since in most 
of the developing countries there are a great percentage of rural areas most of which are still far 
from electrical networks, so its suitable to use such type of technology (i.e., wind energy) for 
ensuring the electric demands of such areas [13]. 

In Iraq there are many region that have the range of wind speed of (3.5–5 m/s) which is 
considered useful for the application of wind energy [4] also these regions are more suited for the 
utilization ,due to their remoteness and relatively small and scattered population [3]. 

According to the decreasing of the conventional energy resources combined with their 
ecological consequences we must initiate a broad development program and make substantial 
funds  for utilizing the renewable energy resources like solar and wind energy. The main focus of 
this research is the modeling of a wind turbine. The goal of this research is to have a significant 
contribution to the ongoing wind turbine research in the areas of modeling and control. A 
complete model will be developed and this will be ready to used as a basis for the design of a 
controller in another paper. For the mathematical model analysis, the rotor dynamics of the wind 
turbine were modeled using the Mat lab software 
 
2. WIND POWER ASSUMPTIONS 
The Rankine-Froude Actuator disc theory [7], [2] was used to define the wind profile over the 
rotor swept area for the analysis of wind turbine performance. The following assumptions apply: 
1. Steady homogenous wind 
2. No obstructions to wind flow either upstream or downstream of the rotor 
3. Uniform flow speed at the disc 
4. Wind flow passing through the disc is separable from the remaining flow by a well-defined 

stream tube. 
5. Wind is incompressible 
6. Wind flow passing through the disk is irrotational. 
 
3. WIND POWER AVALIABLE 
The kinetic energy, (U) of a packet of wind of the wind turbine is given by equation (1): 
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The power, (Pw) in the wind is the time derivative of the kinetic energy and is given by 

equation (2), which represents the total power available for extraction. 
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It can be shown [7] that under optimum conditions, a tube of air approaching a wind turbine 
follows the profiles shown in figure (1). 
 

The relations for the wind velocities and the cross-sectional areas in the following equation 
apply. 
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As the wind passes over the turbine, the wind will lose power equal to the power extracted by 

the turbine, as given in equation (4) 
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This shows that for a given upstream tube-area (A1), an ideal turbine will extract (8/9) of the total 
power available in the wind. Since the upstream cross-sectional area is not physically measurable, 
in contrast the cross-sectional area of the wind turbine, the extracted power is usually 
conveniently expressed in terms of the wind turbine swept area (A2), which will be referred to as 
(A). Using equation (3), equation (5) can be obtained and shows that a turbine cannot extract 
more than (59 %) of the total power in an undisturbed tube of air with the cross-sectional area 
equal to the wind turbine swept area. This is known as Bertz theorem [7] and it limits all wind 
turbines to an efficiency of not more than (59 %). 
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4.  WIND POWE EXTRACTED 
The fraction of power (Pm) extracted from the available power in the wind (Pw) by practical 
turbines is expressed by the coefficient of performance, (Cp). The power extracted (Pm) can then 
be expressed as shown in equation (6). 
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The value of (Cp) varies with the wind speed, the rotational speed of the turbine, the rotor  

pitch angle, and the turbine blade parameters. It cannot exceed (0.59), as seen from equation (5). 
The tip speed ratio, (λ) is a variable that combines the effects of the  rotational speed and the 
wind speed. It is defined as the ratio between the rectilinear speed of the turbine tip, (ωR), and 
the wind speed (u) as shown in Equation (7). 
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Rω
λ =                                                                                                                                          (7) 

 
The parameter R is the maximum radius of the wind turbine's swept area. 

 
5. VARIATION OF Cp WITH TIP SPEED RATIO AND PITCH ANGLE 
Figure (2) illustrates the relationship between the coefficient of performance, (Cp), and the tip 
speed ratio, (λ), for various blade pitch angles (β) for a typical wind turbine. If the power 
performance of a wind turbine rotor is to be evaluated, its Cp(λ,β) curve might be obtained from 
the wind turbine manufacturer and a look-up table can be created to evaluate the coefficient of 
performance for each tip speed ratio and blade pitch angle. If the rotational speed, (ω) and pitch 
angle, (β), are known, (ω = ωo and β = βo for a constant rpm fixed pitch rotor), then the 
mechanical power output, (Pm), at any upstream wind speed, (u), can be found using equation (6). 

 
Sometimes the full Cp(ω,β) data are not available so that equation (6) cannot be used directly 

in power performance evaluations. According to Justus [8], for any operation pitch angle, a good 
approximation to (Cp) as a function of the speed is found by using equations (8a) and (8b). 

 

Re
mm

m uuu
u

u
G

u

u
FCpCp ≤≤




















−−








−−==

32

111                                          (8a) 

 

FR
R

R uuu
u

u
CpCp ≤≤








==

3

3

                                      (8b) 

 
The coefficients (F) and (G) can be found using boundary conditions given by equations (9a) 

and (9b), which are derived from the fact that the coefficient of performance (Cp) is zero at the 
cut-in speed, and is (CpR) at the rated speed. 
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Combining these equations give the solution of (F) and (G)  in a matrix form as given below: 
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If (Cp2) which is given in equation (8) is substituted into equation (6), the variation of 
mechanical power, (Pm), as a function of wind speed, (u), can be evaluated as shown below. 
Equation (11a) relates the input (wind speed, u) and the output (mechanical power, Pm) of the 
wind turbine rotor  for (uc ≤ u ≤ uR). Equation (11b) is valid for (uR ≤ u ≤ uf). 
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Rm PP =                                                                                                                                     (11b) 

 
For each pitch angle, this approximation method requires knowledge of the cut-in speed, (uc), 

which is a function of the rotational moment of inertia of the rotor and the shaft, the maximum 
coefficient of performance, (Cpm), the rated coefficient of performance, (CpR), the rated wind 
speed, (uR), the wind speed at which (Cpm) occurs, (um), and the rated power (Pm) of the wind 
turbine. Fortunately, (uc), (uR), (CpR), (Cpm) and (PR) are given for a wind turbine and the 
coefficients (F) and (G) can be found by applying the boundary conditions that Cp(uc) is zero, 
and (CpR) at rated speed. 

The wind turbine rotor performance can also be evaluated as a function of the coefficient of 
torque (Cq). The wind turbine power, (Pw), is equal to the product of the torque, (T) and the 
rotational speed (ω). It follows that the torque coefficient, (Cq), can be related to the power 
coefficient, (CP), through the relation shown in equation (12). 

 
),(),( βλλβλ CqCp =                                                                                                             (12)  

 
Therefore, manipulation of the torque coefficient using (λ) and (β) will result in manipulation 

of the power produced by the turbine. It is important to recognize the relationship between the 
aerodynamic torque (TA) and the torque coefficient (Cq). Using equations (6) and (12), the 
aerodynamic torque, (TA), that turns the rotor shaft is therefore represented by equation (13). 
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The torque coefficient, (Cq), just like the coefficient of performance, (Cp), is a highly non-

linear function of tip-speed ratio, (λ), and blade-pitch angle, (β). For variable pitch wind turbines, 
the coefficient of performance can be evaluated by the user for each pitch angle as outlined above 
and a surface representing the variation of (Cp) as a function of both (λ) and (β) can be 
generated. For a fixed tip speed ratio, the variation of (Cp) with the pitch angle can be 
approximated by fitting a curve to any Cp(β) data points that might be given for the wind turbine. 
This is done while paying attention to the pitch angle than gives maximum coefficient of 
performance. 
 
6. WIND TURBINE OPERATION 
In deriving a wind turbine mathematical model, a specific wind turbine had to be selected. This 
involved choosing the type of wind turbine operation. Variable-speed, constant-speed, pitch-
control and stall-control were all analyzed and they are discussed previous. 



Anbar Journal for Engineering Sciences © AJES / 2007 
 

- 121 - 

The geometry and aerodynamics wind stream-33 [8] had been selected with wind turbine 
characteristics shown in table (1). With the wind turbine characteristics chosen, the next step was 
to derive the mathematical model of a pitch-controlled constant-speed wind turbine. Next section 
discusses the basic equations for such a wind turbine and shows the derivation of the 
mathematical model. 
 
7. WIND TURBINE MODELING 
 
7.1 Wind Turbine Plant Model 
The wind turbine plant model was divided into two main parts. The first part was the wind 
turbine, which included a turbine rotor on a low-speed shaft, a gearbox and high-speed shaft. The 
inputs for this part of the plant were the wind speed and the blade pitch angle while the outputs 
were the high-speed shaft angular rotation and the mechanical power, (Pm). The second part was 
the electric generator whose input was constant angular rotation from the turbine plant and whose 
output was electrical power.  

The following six steps show the sequence of events in the block diagram: 
1. Wind and blade pitch angle are input into wind turbine plant, which causes the rotor to spin. 
2. The low-speed shaft angular speed is fed back and compared to reference low speed shaft 
angular speed. 
3. The angular speed error is input to the controller, which commands a change in blade-pitch 
angle. 
4. A new blade pitch angle is applied to the actuator. 
5. The actuator changes the blade pitch angle. 
6. Wind at a new wind speed is input into the wind turbine plant and the six steps are repeated. 

Although the goal of this control sequence is to maintain a constant angular speed and 
constant power, (Pm), only the angular speed is fed back to accommodate the wind speed 
fluctuations. This is because, controlling the angular speed automatically means that the 
aerodynamic torque, (TA) that causes the rotation, is controlled and hence the extracted 
mechanical power, (Pm). This is derived from the fact that these three quantities, (Pm), (TA) and 
(λ) are related by equation (14). 

 

Am TP .ω=                                                                                                                                   (14) 

 
Therefore controlling (TA) and (λ) to remain constant will cause the power (Pm) to remain 

constant as well. Throughout this thesis only angular speed control will be mentioned because its 
output profile will be closely related to that of the power (Pm) as will be seen later . The 
aerodynamic torque, (TA), must be opposed by an equal and opposite load torque, (TL), for the 
turbine to operate at steady speed. If (TA) is greater than (TL), the turbine will accelerate, while if 
(TA) is less than (TL), the turbine will decelerate. Equation (15) gives: 

 

LATT TTJ .. =ω                                                                                                                            (15) 
 

This mathematical description, where (JT) is the equivalent combined moment of inertia of the 
rotor, gear reducer and both the low-speed and high-speed shafts. (TL) is the mechanical torque 
necessary to turn the generator and was assumed to be a constant value derived from the wind 
turbine plant physical properties. The aerodynamic torque, (TA), is represented by equation (13). 
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It is important to recognize the relationship between the power coefficient and the torque 
coefficient. Power extracted from the wind is shown in the equation (16) below: 
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The turbine plant power, (Pm), is equal to the product of the aerodynamic torque, (TA), and the 

rotational speed (ω) as shown in equation (14). The torque coefficient, (Cq), can be related to the 
power coefficient, (Cp), through the relation shown in equation (17). 

 
),(),( βλλβλ CqCp =                                                                                                              (17) 

 
Therefore, manipulation of the torque coefficient using (λ) and (β) will result in manipulation 

of the power produced by the turbine. Equation (17) is non-linear because it is a function of (Cp), 
which is highly nonlinear.  

 
A traditional approach is to design a commonly used linear controller, such as proportional-

integral-derivative (PID) and linearize the non-linear turbine dynamics about a specified 
operating point [11].  

 
Assuming, (TA|OP = TL|OP) linearization of the equation (16) yields: 
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Simplifying equation (18) yields: 

 
βδωγαω ∆+∆+∆= u&                                                                                                                 (19) 

 
In this equation, (∆ωT), (∆u) and (∆β) represent deviations from the chosen operating point 

(ωTOP), (uOP) and (βOP) respectively. The parameters (α), (γ) and (δ) are given by equations     
(20-22). Their detailed derivations are shown in appendix (A). 
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The parameters (α), (γ) and (δ)  represent the wind turbine dynamics at the linearization point. 
Their quantities depend on the wind speed and the partial derivatives of the coefficient of torque, 
(Cq) with respect to (λ) and (β) at the operation point. The magnitudes of (α) and (δ) show the 
relative weight of the effect wind speed (u) and the pitch angle (β), respectively, on the wind 
turbine angular speed. Equation (19) is the linear equation describing the wind turbine dynamics. 
Applying Laplace transforms yields: 
 

)()()( sssu βδωγαω ∆+∆+∆=∆                                                                                                 (23) 
 
Rearrangement the above equation yields to: 
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After linearization about the chosen operating point for which the angular rotation speed is 

(ωTOP), the wind speed (uOP), and the pitch angle is (βOP), equation (24) is a linear equation that 
describes the wind turbine dynamics in the Laplace domain. It represents the change in rotor 
speed output from the wind turbine. The inputs (∆u) and (∆β) represent deviations from the 
chosen operating points. Figure (4) shows the block diagram representation for equation (24). 
The wind turbine is therefore represented by the first-order transfer function GP(s) shown below: 
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7.2 Wind Turbine Aerodynamic Data Specifications 

The complete Cp(λ,β) data was not available for the Grumman Windstream-wind turbine. 
There were a few key data points relating (Cp), (λ), and (β), which were enough to evaluate the 
wind turbine performance. The available data is given in table (2) and it was obtained from the 
study that was conducted in [6]. 

 
8. MATHLAB SOFTWARE 
The human limitations involved in compiling numerical and graphical data were formidable 
obstacles to implement more advanced qualitative or quantitative methods [9]. Computer 
platforms have reduced these obstacles with the using of the comprehensive mathematical 
software systems on personal computers. The approach formed in this research was treated using 
MATHLAB Software, and the results were found using this software and the program was listed 
in appendix (A). 

 
9. RESULTS 
Based on the available data, the linearized operating point was chosen to be  (βOP = 9o), (λOP = 7), 
(uOP = 7.5 m.s-1) and (CpOP = 0.2). This operating point was chosen because is represents 
operation at relatively aerodynamically stable conditions. At the (β = 3o), the wind turbine is 
operating at maximum (Cp) but it is also close to stalling conditions (β < 3o). Therefore the blade 
pitch angle is restricted for lower operational blade pitch angles. This would also restrict the 
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control scheme. At (β = 12o), the blade pitch angle so much that the wind turbine can no longer 
extract any power from the wind. Therefore the operating point was set at (β = 9o). 

The coefficient of performance, (Cp) was evaluated at the linearized wind turbine operation 
blade pitch angle, (β), of (9o). The variation of the coefficient of performance with the tip speed 
ratio was obtained using the method outlined previously. Figures (5) and (6) show the variation 
of (Cp) with wind speed, (u), and tip speed ratio, (λ), at the fixed pitch angle (β) of (9o) for the 
Grumman Windstream-33 wind turbine based on the data in table (2). In comparison with the 
variation of (Cp) for other wind turbines [1, 10, 11], this method of approximation gave 
satisfactory results. Figure (7) shows the variation of the rotor mechanical power with wind 
speed, (u), at the fixed pitch angle (β) of (9o) for the same wind turbine. At a wind speed of     
(7.5 m.s-1), which corresponds to a tip speed ratio of (7), the coefficient of performance and the 
mechanical power are regulated . The profiles obtained from Figures (5) to (7) were all obtained 
from the approximation method presented previously. All the profiles are comparable to general 
wind systems as found in the references. Figure (8) shows the variation of the coefficient of 
performance, (Cp), with the pitch angle, (β). This curve was derived from the three data points 
relating (Cp) and (β) in table (2) by fitting a third-order polynomial. 

The coefficient of performance as a function of the pitch angle was derived using the three 
Cp(β) data points that were given at the operation (linearization) tip speed ratio of (7). A third-
order polynomial was used to fit the data in order to derive the variation of the coefficient of 
performance, (Cp), with the pitch angle, (β). The constants at the operation point, the derived 
Cp(λ,β) curves and the relation between (Cp) and (Cq) were used to  calculate the wind turbine 
dynamic constants (α), (δ) and (γ). Table (3) shows the values obtained for these parameters. 

The value of (α) is positive because any increase in the wind speed causes the rotor to 
accelerate. However, (δ) is negative because increasing the pitch angle leads to a decrease in the 
rotor speed. For the wind turbine plant to be stable, the value of (γ) should be negative to make 
the pole of the wind turbine plant transfer function fall on the left hand side of the s-domain.  

It should be noted that linearization is valid only when the wind turbine is to be analyzed at 
near linearization conditions. At the specified operating points, all the wind turbine performance 
parameters fall on the derived Cp(λ,β) curves. Therefore, the wind turbine dynamic model was 
fairly accurate for simulations at or near the operating conditions. 
 
10. CONTRIBUTIONS 
This research contributed a method of wind turbine performance estimation, modeling, 
linearization and control. The specific contributions are:  
1. The wind turbine model was derived using a linearization technique coupled with the 
approximation of the wind turbine dynamics. Given that there was no readily available data for a 
straightforward data reduction procedure, the method developed by Justus [8] was used and it 
proved to be successful based on the output profiles that were obtained for all the simulations. All 
of them were comparable to the profiles of other wind turbines that have been studied [7]. This 
was a different and useful approach to wind turbine modeling. 
2. The human limitation involved in compiling numerical and graphical data were formidable 
obstacles to implementing more advanced qualitative or quantitave methods. In this work the 
using of the comprehensive mathematical  software system MATHLAB reduces these obstacles 
and its obvious that the software used in this work is a great tool to deal with such studies. 
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Appendix (A): MATHLAB Code for Variation of Cp with u and λλλλ 
%Cq and Cp curve as a function of Lambda 
close all; 
clear all 
clc; 
J_T=1270; %Moment of inertia 
pr=20000; %Rated Power 
r=5; %radius of the rotor 
rho=1.225; %density 
uc=6.5; %cut in speed 
ur=11.7; %rated speed 
uf=24; %Furling speed 
omega=105; %angular speed 
cpm=0.2596; %maximum cp 
lamdam=5; %tip speed ratio at maximum cp 
um=11; %wind speed at maximum cp 
cpr=pr/(0.5*rho*ur^3*r^2*pi); 
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% Operation or linearization point 
lamb_op=7; %operation tip speed ratio 
u_op=7.5; %operation wind speed 
cp_op=0.2; %operation Cp 
cq_op=cp_op/lamb_op; %operation Cq 
% Solve the A and B coefficients 
A_B=inv([((um/uc)-1)^2 ((um/uc)-1)^3;((um/ur)-1)^2 ((um/ur)- 
1)^3])*[1;1-cpr/cpm]; 
A=A_B(1,1); 
B=A_B(2,1); 
%Find the Cp and P variation 
uu=[uc:0.01:uf]'; 
u=[uc:0.01:ur]'; 
u1=[ur+0.01:0.01:uf]'; 
for i=1:size(u) 
for k=1:2; 
beta(k)=0; 
cp(i,k)=cpm*(1-A*((um/u(i))-1)^2-B*((um/u(i))-1)^3); 
p(i,k)=0.5*rho*pi*r^2*cp(i,1)*u(i)^3; 
lamb(i,1)=r*omega*2*pi/(60*u(i)); 
cq(i,k)=cp(i,k)/lamb(i,1); 
end 
end 
for k=1:size(u1) 
j=k+521; 
for l=1:2 
beta(l)=0; 
cp(j,l)=(cpr*ur^3)/u1(k)^3; 
p(j,l)=0.5*rho*pi*r^2*cp(j,1)*u1(k)^3; 
lamb(j,1)=r*omega*2*pi/(60*u1(k)); 
cq(j,l)=cp(j,l)/lamb(j,1); 
99 
end 
end 
% Plotting time!!!!! 
figure(1) 
plot(uu,cp(:,1)),grid; 
title('Figure 1: Graph of Coefficient of performance, cp as a 
function 
of wind speed'); 
xlabel('wind speed (m/s)'); 
ylabel('C_p') 
figure(2) 
plot(lamb,cp(:,1)),grid; 
title('Figure 2: Graph of Coefficient of performance, cp as a 
function of tip speed ratio'); 
xlabel('tip speed ratio'); 
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ylabel('C_p') 
figure(3) 
plot(uu,p(:,1)),grid; 
title('Figure 3: Graph of Rotor Mechanical Power as a function of 
wind speed u'); 
xlabel('wind speed (m/s)'); 
ylabel('Rotor Mechanical Power') 
figure(4) 
plot(lamb,cq(:,1)),grid; 
title('Figure 4: Graph of Coefficient of torque, cq as a function 
of tip speed ratio'); 
xlabel('tip speed ratio'); 
ylabel('C_q') 
figure(5) 
surf(beta, lamb, cp); 
AXIS([-2 2 1 15 0 .6]) 
title('Figure 5: Graph of beta, lamda versus the coefficient of 
performance') 
xlabel('beta') 
ylabel('lamda') 
zlabel('Cp') 
figure(6) 
surf(beta, lamb, cq); 
AXIS([-2 2 1 15 0 .06]) 
title('Figure 6: Graph of beta, lamda versus the coefficient of 
Torque'); 
xlabel('beta') 
ylabel('lamda') 
zlabel('Cq') 
dcq_dlamb=-(cpm/lamb_op^2)*(1-A*((um/u_op)-1)^2-B*((um/u_op)-
1)^3); 
%(dCq/dlambda) 
alpha=(1/J_T)*0.5*rho*pi*r^3*u_op*(2*cq_op-lamb_op*dcq_dlamb) 
%alpha 
gamma=(1/J_T)*0.5*rho*pi*r^4*u_op*dcq_dlamb 
%gamma 
 
Appendix (B): Wind Turbine Aerodynamics And Parameters  
 
Starting from wind turbine dynamics equation: 
 

LATT TTJ .. =ω                                                                                                                            (B.1) 
 
Where (TA) is the aerodynamic torque represented by : 
 

2),(
2

1
uARCqTA βλρ=                                                                                                               (B.2) 



Anbar Journal for Engineering Sciences © AJES / 2007 
 

- 128 - 

 
Assuming, (TA|OP = TL|OP), linearization of the equation (14) results in the following : 
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simplifying the expression: 
 

βδωγαω ∆+∆+∆= u&                                                                                                                 (B.4) 
 
Derivation of (α): 
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Table (1): Wind Turbine Characteristics [14] 

 
 
 
 
 
 
 
 
 
 
 
 

Table (2): Aerodynamic Parameters for Grumman Windstream-33 Wind Turbine [6] 
 

 
 
 
 
 
 
 
 
 

 
 
 

Rated power (PR) 20 kW 
Radius (R)  5 m  
Drive Train Inertia (JT) 1270 kg.m2 
Gear ratio (n)  11.43 
Operation Angular Speed (ω) 105 rpm 
Cut- in Speed (uc) 6.5 m.s-1 
Rated Wind Speed (uR) 11 m.s-1 
Furling Speed (uF) 23 m.s-1 

(β) Range  0 – 12 degree 

β = 3o Cp = Cpmax 0.42 
λ 7 
u 7.5 m.s-1 

β = 9o Cp 0.2 
Cp = Cpmax 0.28 at λ=5, u=11 m.s-1   
λ 7 
u  7.5 m.s-1 

β = 12o Cp  0 
λ 7 
u 7.5 m.s-1 
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Table (3): Wind Turbine Linearization Constants  
 

α  0.117 s-2 

δ – 0.8582 s-2 

γ  – 0.0256 s-1 
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