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ABSTRACT

Viscoelasticity, as its name implies, is a generalization of elasticity and viscosity. Many
industrial applications use viscoelastic matrix with reinforcement fiber to obtained better
properties. Tensile testing of matrix and one types of fabric polyamide composites was
performed at various loading rates ranging from (8.16* 10™ to 11.66 * 10” m/sec) using a
servohydraulic testing apparatus. The kind of reinforcement, random glass fiber (RGF), and
the kind of matrix, epoxy (E) are used shown that the linear strain (< 0.5) for the three
parameter model gives a good agreement with experimental results. The results showed that
both tensile strength and failure strain of these matrices and composites tend to decrease with
increase of strain rate. The experimental results were comparison with numerical results by
using ANSYS 5.4 program for simple study case has shown some agreement. Fracture regions
of the tested specimens were also observed to study micro mechanisms of tensile failure.
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1. INTRODUCTION

In practical engineering design, strains and stresses are very important criteria in reliability
and serviceability evaluations of structures. Viscoelasticity is an important concept for
determining long — time behaviour (service-life time) of structures. Viscoelasticity permits us
to describe the behaviour of materials exhibiting strain rate effects under applied loads. These
effects are illustrated by creep phenomena under certain loads or by stress relaxation under a
constant deformation. For most composites, the viscoelastic behaviour is primarily due to the
matrix. Composite materials are reinforced with fibers in part to resist creep deformation. The
magnitude of the creep deformation induced in a composite structure under a certain loading
is influenced by a variety of some factors, such as material architecture, temperature,
humidity, loading frequency, and stress level [1]. Tensile testing of continuous fiber
reinforced polymer composites has been performed to characterize the tensile mechanical
behaviour of the composites. Mechanical properties such as elastic modulus were obtained by
using tensile testing systems [2]. The assumptions used are that the matrix is linear
viscoelastic and the fibers are elastic. The viscoelastic analysis techniques may broadly be
classified into three approaches, viz. (i) quasi-elastic solutions, (ii) integral transform
techniques, and (iii) direct methods. Quasi-elastic solution uses elastic properties equivalent to
the corresponding viscoelastic properties at the desired time and temperature. This approach
essentially ignores the entire past history of loading and environment and therefore yields
gross approximation to the true response. Integral transform technique [3] is based on the
corresponding principle, in which using the elastic solution, the corresponding viscoelastic
solution is obtained using Laplace transform technique. This approach is exact for which
closed form solutions are possible and approximate Laplace transform inversion has to be
employed for the problems with the numerical elastic solution [4]. Further, the transform
technique is not directly applicable for the problems of non-homogeneous transient
temperature distributions. To circumvent these problems, conditions of constant temperature
over time increments are imposed and the correspondence principle is applied on an
incremental basis [5]. The direct formulations are based on the finite element theory using
either the differential form [6] or the integral form [7] of stress-strain relationships.

In this work studying the behaviour of one matrix is used and random glass fiber (RGF)

of composite beams. Package program (ANSYS 5.4) are used in this work to compression
between experimental results with numerical results for these four types of composite beam at
greatest load used and studying new cases illustrated the viscoelastic composite behaviour.
It is well known that the straightforward application of the displacement method to nearly
incompressible structures yields erratic displacements and severely oscillating stresses about
the exact solution and across the elements. This aspect has been studied for elastic materials
and is well documented in literature [8]. The remedies suggested in literature to overcome the
difficulties are the use of: (i) refined meshes, (ii) reduced Poisson’s ratio, (iii) alternate
formulations. Such as the stress hybrid approach and the formulation based on Hermann’s
(Semi-Reissner’s) variational principle, and (iv) reduced integration for the troublesome
portion of the strain energy. The proposition of mesh refinement [9] needs number of
elements and yields doubtful results and therefore is not advisable. The results obtained using
the reduced Poisson’s ratio have to be extrapolated so as to obtain the results corresponding to
the required Poisson’s ratio [10].

2. VISCOELASTIC MODEL

The mechanical model is equivalent to describe the viscoelastic behavior and construct of
elastic spring, this will obey Hooke’s laws, and viscous dashpots, which obey Newton’s law of
viscosity [11].
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The simplest mechanical model is a combination of one spring with one dashpot linked
either in parallel (Voiget or Kelvin model) or in series (Maxwell model) [12]. Each spring
element is assigned a stiffness (E), which represents modulus of elasticity, and each dashpot is
assigned a frictional resistant (force-velocity of displacement), A which represent the viscosity
[13].

The two models couldn’t satisfy the viscoelastic properties (creep and relaxation)
completely if they are used alone, the combination between two models (Maxwell- Kelvin
model) gives good results in both creep and relaxation [14].

2.1 Maxwell Model

A spring and dashpot in series, as shown in Fig .(1), form this model. For simple tension as o,
is applied at t = 0, an immediate elastic strain €° of the spring occurs. Then a viscous strain &' of
dashpot is added. The total strain is equal to the sum of the strain in each component. While the
stress acts on them is the same. The total strain can be written as:

e=¢g"+¢' (1)

Then the strain rate is:

de _ de N de @)
dt dt dt

Thus, the governing equation of Maxwell model is [12]:
de _1,do o 3)

dt E di A

It is of interest to examine the response of such a material to various stress and strain
histories. In the case of the application of constant stress, eq.(3) is reduced to:

de o
e =2 4
d A ¥
then by integration,
of o
E=—+—>2 5
PR )

Eq.(5) explains that only viscous flow is observed with time. After the time t;, the stress ¢
is removed; an immediate recovery of elastic component of strain occurs leaving irreversible
strain of viscous element as shown in Fig.(2). For the case of constant strain as shown in
Fig.(2), eq.(3) will be:

d_O' = idl (6)

o2 A

by integration,
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oo, p(_j ™

Where (t'= A / E) is the ‘relaxation time’.Fig.(2) shows the creep and recovery, stress
relaxation for Maxwell models [12].

2.2 Voiget Or Kelvin Model

This model consists of spring and dashpot in parallel as shown in Fig. (3). As o, applied, a
dashpot prevents an instantaneous extension of the elastic spring. With time, the viscous
behavior causes an increase of the strain. The total strain, elastic strain, and the viscous strain
are equal, and each component supports a portion of 6,. therefore:

c,=0=0"+0" (8)
o= E<9+/1E 9)
dt

Beginning with the creep, where the model supports to constant stress, the solution of
governing eq.(9) is:

— 00| (L
£ = Z [1 exp( - )} (10)

Where t = A/ E is the retardation time.

Comparison eq.(10) and eq.(5) indicate that, the predicted creep behavior of the Kelvin
model is more realistic, since the strain approaches to o, / E as time approaches infinity [17].
The response of Kelvin model to constant load is most readily understood by considering the
recovery response, where ¢ = 0, then

Ee+ 2% 2 (11)
dt

By integration:
—t
E=¢, exp(tT) (12)
Fig.(4) shows the creep and recovery behavior of Kelvin model. Consider now Kelvin
model subjected to constant strain as shown in Fig.(4), then eq.(9) will be reduced to:
o=EFEe (13)
Eq.(13) implying that the material behaves as an elastic solid which is an dequate for
general viscoelastic behavior [15]. It is shown that Maxwell model gives a reasonable
prediction of relaxation but it has unlimited deformation, whereas, Kelvin models provide a

better prediction for creep and recovery but it provides for a maximum displacement limited by
the elastic deformation of the spring [16].
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We used in this study the another simple and more general than Maxwell or Kelvin model
is the standard linear solid, which is formed by the combination of Maxwell and Kelvin model
as shown in Fig.(5). It exhibits an instantaneous glassy response as well as delayed elasticity
and recovery [17]. Fig.(6) shows the creep, recovery and stress relaxation of the standard linear
solid, which are more realistic than Maxwell or Kelvin model.

The shear relaxation modulus and creep compliance of shear stress is shown in Fig.(5a).

-1
G()=E, + Ele/" : (14a)
A
Where: ¢, = %;1 ,
J(t)=i—Le_/ (14b)
Eo Eo(Eo + El) tz

Where: ¢, = ElE%l ,

While the shear relaxation modulus and creep compliance of Fig.(Sb) is shown below,

EE E?
10 + 0 e—t (153)
E+E, E+E /h

Where: ¢, = (£, + E%l ,

J(z):Ei+Ei(1—e—/t2j (15b)

o 1

Where: ¢, = % ,
1

The behavior of these models under on entirely different set of condition provides a
reasonable predication of real materials [16].

G(t) =

3. SHEAR ELASTIC MODULUS

It will be necessary to describe the definition and measurement of the parameter is used to
quantify viscoelastic effects. Experimental work gives the shear elastic modulus by using the
tensile test for (E). By using the curve fitting program can be obtained to the coefficient of the
shear relaxation. This program used the last square method to solve the polynomial equation.
Fig.(7) show that the comparison between the experimental results with the results of the
curve fitting program (prony series) for the shear elastic modulus with the time. All constant
parameters of the viscoelastic material are as shown in the following Table.(1). The
rheological model is the Generalized Kelvin and Maxwell model in deviatoric component and
elastic in volumetric component as shown in Fig.(8).
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4. EXPERIMENTAL PROCEDURE

4.1 Material And Specimen

Random glass fiber (RGF) polyamide composites were studied in this work. This random
fiber was used as the reinforcement in these composites. The matrix was epoxy (E). It is
known that (E) has higher stiffness and strength than polyester (P). The composites are
denoted here after by RGF/E. The fiber volume fractions were 48% for RGF/E at 8 layers and
32% for RGF/E at 9 layers. Tensile specimens were cut from the laminates and the direction
of the warp threads corresponded with the tensile loading direction. Specimen geometry has
shown in Fig.(9).

5. RESULTS AND DISCUSSION

5.1 Tensile Testing

Stress-strain relations of (E) at three different loading rates are shown in Fig.(10). For the
polyamide composites the stress —strain relations obtained at the (11.6* 10~ m/sec) are shown
in Fig.(11). It has been postulated that the nonlinearly in random fabric composites is caused
by micromechanical deformation such as shear deformation of the longitudinal threads,
extensional deformation of the matrix regions and transverse cracking of the transverse
thread. It is clearly seen from Fig.(10) and Fig.(11) that the nonlinear stress-strain behaviors
in both epoxy matrix (E) and the random glass fiber (RGF) composites. Dependence of the
initial tensile modulus on strain rate is shown in Fig.(12) and Fig.(13) respectively. The
tensile module of E, and RGF/E tended to slightly increase as strain rate increased, while this
modulus appeared decrease as time increased as shown in the Fig.(14) and Fig.(15)
respectively.

5.2 Fracture Mechanism

RGF is used in this work show the photos in Fig.(16). Fig.(17) show that the photos of the
RGF/E composite before tensile test. Failure regions of the RGF/E composite at loading rate
(11.66 * 10” m/sec) are shown in Figs.(18),(19).For RGF/E composite, a relatively straight
fracture line perpendicular to the tensile direction and pull-outs of fiber bundles was observed.
The damages such as matrix cracking, debonding, interfacial failure and delamination show
that in Figs.(18),(19).

6. NUMERICAL RESULTS

After making a preview for the experimental work, Figs.(20),(21) shows the comparison
between the experimental results for both model on the greatest load used for viscoelastic
composite beam with the numerical solution for using ANSYS 5.4 program the viscoelastic
beam for the same geometry and characteristics. The general behavior of epoxy seems to be
stable, though it is increasing slowly and clearly with the course of time. This can be seen
clearly from the experimental results. Fig.(20) shows the behavior of the viscoelastic beam
increases with the time, and this increasing continues with exceeding the limits of the
viscoelastic composite beam. This figure differs from other figure, in general behavior. This
difference returns to the magnitude of harmonic between the loads with the number of layers
are used. Fig.(21) show that some how approximate results and shows a good agreement
when compared with another figure above because the numbers of the layers with the applied
load are harmonic.
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7. CONCLUSIONS

1. Random E-glass fiber composite with epoxy matrix showed better tensile performance at
all testing rates than epoxy matrix.

2. Epoxy matrix has shown very good fracture resistance. The tensile test shows that clearly
and the ratio of epoxy matrix resistance against the effective load is excellent.

3. The tensile mechanical properties of RGF/E dramatically increased as strain rate increased.
On the other hand, the elastic modulus of both matrixes only and composite decreased as
strain rate increased and then slightly decreased at high strain rates. As a result, the elastic
modulus in general increased as the strain rate increased.
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NOMENCLATURE
Symbol  Definition SI Unit
d Differential operator —
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(E) Epoxy -
E Elastic modulus N.m?
Ey.E; B, Young’s modulus for spring in mechanical model N.m™
F Fiber -
G(t) Shear relaxation modulus N.m-2
J(t) Creep compliance m2.N-1
t Current time Sec
tLt Relaxation time Sec
tot Retardation time Sec
A Damping coefficient -
o Normal stress N.m-2
o Initial stress N.m-2
c° Elastic stress N.m-2
c Viscous stress N.m-2
€ Normal strain -
€ Initial strain -—
& Elastic strain -
g’ Viscous strain -

E A
00—/\/\/\/\/\/_]_40 c o

Fig. 1. Maxwell Model. A
Fig. 3. Kelvin Model.
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Fig. 2. Creep and Recovery of Fig. 4. Creep, Recovery & Relaxation
Maxwell Model. Behavior of Kelvin Models.
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Fig. 17. RGF/E before test. Fig. 18. RGF/E after test.
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