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The convergence of cloud and edge computing in smart 
manufacturing offers significant potential for improving 
efficiency in Industry 4.0. However, task scheduling in this 
context remains a complex, multi-objective challenge. This 
study introduces a novel Cloud-Edge Smart Manufacturing 
Architecture (CESMA), leveraging a hybrid approach that 
integrates NSGA-II and the Improved Monarch Butterfly 
Optimization (IMBO) algorithms. The combination utilizes 
NSGA-II's global search and non-dominated solution 
capabilities with IMBO's fine-tuning and local optimization 
strengths to enhance task scheduling performance. Where 
CESMA combines the scalability and analytics power of cloud 
computing with edge-based real-time decision-making to 
address the dynamic demands of smart manufacturing. 
Through extensive simulations and experiments, the feasibility 
and effectiveness of CESMA are validated, showing improved 
task scheduling quality, resource utilization, and adaptability 
to changing conditions. This research establishes a robust 
platform for managing the complexities of task scheduling in 
cloud-edge environments, advancing intelligent manufacturing 
processes, and contributing to the integration of evolutionary 
algorithms for real-time industrial decision-making. 
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1. Introduction    

In the age of Industry 4.0, smart manufacturing 
(SM) has undergone a transformative paradigm 
shift through the synergistic use of, and 
convergence between, cloud and edge computing 
technologies [1-4]. Amid this amalgamation lie 
promises of unprecedented efficiency boosts and 
novel solutions to industrial challenges. Yet, with 

such a technological revolution, optimizing the 
schedule in such dynamic environment is still a 
challenge, considering multiple objectives [5-7].  
By combining cloud and edge computing 
technologies, smart industries have achieved an 
unmatched capability to utilize the benefits of real-
time data processing, scalability, and distributed 
decision making. The essence of task scheduling in 
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these systems where the processes are well 
coordinated and the efficiency is crucial cannot be 
underestimated [8] [9]. First and foremost, an 
efficient scheduling directly affects production 
efficiency, resource utilization, energy 
consumption, and quality assurance. Conventional 
approaches to task scheduling are generally static 
and centrally controlled and problematically 
struggle with the continuously changing 
complexities of modern smart manufacturing lines. 
In resolving this, a multi-objective approach seems 
the most captivating solution [10]. This approach 
offers a complete picture by tackling different 
conflicting objectives simultaneously, thus 
achieving balance amid competing demands [11]. 
This paper proposes the Cloud-Edge-based Smart 
Manufacturing Architecture, CESMA, a paradigm 
shift in scheduling. CESMA integrates two state-of-
the-art optimization algorithms: NSGA-II [12-15] 
and the Improved Monarch Butterfly Optimization 
algorithm, IMBO [16-18]. NSGA-II does well in 
exploring scheduling solutions on a global level, 
while IMBO contributes expertise in local 
optimization [19]. They provide CESMA with 
comprehensive scheduling insights that are both 
globally non-dominated and locally refined for 
efficiency. This study epitomizes CESMA's 
effectiveness through extensive simulations and 
empirical studies, showing a vast improvement in 
scheduling quality, resource utilization, and 
adaptability to dynamic manufacturing conditions. 
More than that, this work takes part in the broader 
debate on how cloud-edge computing, combined 
with evolutionary algorithms, can be used for more 
effective decision-making within real-time 
industrial environments to promise versatile 
solutions amid Industry 4.0 revolutions. Because 
smart manufacturing lines are remote and 
heterogeneous, optimizing cloud-edge integration 
for work scheduling poses special difficulties. Tasks 
must be distributed effectively among cloud and 
edge resources in these kinds of settings, juggling 
several competing goals like reducing latency, 
maximizing resource use, guaranteeing system 
scalability, and preserving energy efficiency. These 
complex requirements are frequently beyond the 
scope of conventional single-objective or non-
hybrid optimization approaches. They frequently 
overlook the complex interactions between these 
levels to concentrate on either cloud or edge 
optimization. This constraint provides compelling 
evidence for implementing a hybrid strategy that 
combines several algorithmic capabilities to 

address the intricacy of cloud-edge work 
scheduling successfully. 
The main contributions of the paper are as follows:  
➢ The article presents CESMA, a novel Smart 

Manufacturing Architecture that integrates 

cloud and edge computing. 

➢ CESMA combines two efficient optimization 

algorithms, NSGA-II and IMBO, to deal with 

the complex task scheduling problem. 

➢ CESMA optimizes task scheduling by 

effectively managing the conflicting goals of 

production efficiency, resource utilization, 

energy consumption, and quality assurance. 

Through extensive simulation, CESMA shows an 
effective way of improving scheduling quality, 
adaptability, and resource efficiency by large 
margins—hence, it is an essential tool in the 
decision-making of Industry 4.0 environments. 

 
2. Literature Review 
The problem is optimizing production [20] 
scheduling and computation offloading in 
intelligent workshops with a Cloud-Edge-Terminal 
architecture. This balance optimization considers 
production efficiency and computing delay, which 
can solve the strong coupling relationship between 
the production jobs and computing tasks. The 
proposed model, PCCO, aims at dual objectives: 
minimizing total offloading delay time for 
computing tasks and the maximum completion 
time for production jobs. An enhanced multi-
objective whale optimization algorithm with 
improved exploration and diversity-preserving 
mechanisms is used to achieve these dual 
objectives. The traditional job scheduling faces the 
challenges of low information transparency, 
delayed response, inaccurate scheduling, and 
suboptimal optimization that hinder productivity 
and competitiveness in an enterprise [21]. It 
introduces an innovative approach integrating 
energy consumption concerns into job shop 
scheduling to address these. It is designed to reduce 
completion times, delay, and energy consumption, 
realizing the importance of energy efficiency in 
modern manufacturing. Formulate a multi-
objective scheduling model [22]  as a mixed integer 
linear programming (MILP) problem and utilize 
preemptive fuzzy goal programming (FGP) with 
linguistic terms for a solution, emphasizing 
importance factors. It also introduces novel 
reinforcement learning (RL) algorithms, including 



Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16,1, (2025) 21 ~ 35                                                                              23                                  

 

 

AJES   P-ISSN: 1997-9428; E-ISSN: 2705-7440                                                                                                    https://ajes.uoanbar.edu.iq/  

SARSA, Q-learning, and Deep-Q-Network (DQN), to 
optimize resource scheduling in CMfg. [23] Address 
the critical scheduling and process optimization 
challenges for blockchain-enabled cloud 
manufacturing (SPO-BCMfg), recognizing its 
significance in achieving service-oriented goals. 
Blockchain-enhanced cloud manufacturing offers 
improved collaboration and information security, 
integrating distributed storage and consensus 
mechanisms, making SPO-BCMfg a complex multi-
objective optimization problem. The article 
establishes a dynamic selection evolutionary 
algorithm to tackle this challenge, focusing on 
convergence and diversity, demonstrating its 
superior performance to other advanced 
evolutionary algorithms. 
The article [24] tackles challenges in handling 
production exceptions within smart 
manufacturing, dealing with resource 
uncertainties, delayed identification and control, 
and prolonged decision-making due to complex 
factors. It introduces an edge-cloud collaboration-
based self-adaptive approach that leverages IoT 
and edge computing for resource intelligence, uses 
fuzzy Bayesian networks for exception diagnosis, 
and promotes self-adaptive handling through 
machine collaboration across production levels, 
demonstrated to improve efficiency in a casting 
post-processing system case study. Challenges 
posed by the vast expansion [25] of the Internet of 
Things (IoT) by developing a multi-cloud task 
scheduling model with six key goals: minimizing 
time complexity, cost, internet traffic, energy usage, 
optimizing resource utilization, and achieving load 
balancing. The study employs a multi-objective 
intelligent algorithm based on the sine function to 
maximize these goals, ultimately enhancing 
scheduling effectiveness and security in IoT data 
processing, offering a novel solution to IoT's data 
management challenges. This article [26] tackles 
workflow applications' rising significance, driven 
by computing technology advancements. It 
addresses the challenge of optimizing complex 
workflows, accounting for factors like Quality of 
Service, task dependencies, and user deadlines. It 
introduces the Multi-objective Artificial Algae 
(MAA) algorithm for efficient scientific workflow 
scheduling in a fog-cloud environment, focusing on 
reducing execution times, energy usage, and costs 
while maximizing fog resource utilization, 
addressing a gap in heterogeneous computing 
systems. 
 
 

3. Methodology 
3.1 Smart Manufacturing Lines: 

Optimizing various objectives in the context of 
bright manufacturing lines is paramount, and the 
whole manuscript has a novel IIoT cloud-edge-end 
collaborative computing offload architecture. This 
developed approach capitalizes on the unique 
strengths of cloud servers, known for their 
powerful computing and storage resources, and 
edge servers, prized for their low communication 
cost, short response time, and robust network 
adaptability. By harnessing the best of both worlds, 
the whole manuscript seamlessly integrates and 
invokes heterogeneous computing resources, 
dynamically offloading tasks to the most suitable 
location based on the distinct requirements of 
different applications. The concept of the system 
model is adapted from the study [27]. 
 

3.1 1 Architecture Overview: 
The whole manuscript architecture consists of 
three pivotal layers, as illustrated in Figure 1. 
A. End-Device Layer: The end-device layer is the 

lowest layer, and it contains many IIoT devices that 

are abundant in sensors. These are small, sensor-

rich devices but are highly constrained by small 

battery capacity, limited computing resources, and 

constrained storage resources. An energy-efficient 

data transmission mechanism is envisaged to 

process the data mined from these devices. The 

task data from these devices are forwarded to the 

edge or cloud layers through wireless access points 

(APs) or base stations (BSs) for efficient data flow. 
 

B. Edge Layer: The middle layer, also known as the 

edge layer, is composed of lightweight edge servers 

strategically placed at the periphery of a network. 

Indeed, these edge servers are well suited to 

offering low-latency computing services, which 

perfectly fit the real-time requirements of smart 

manufacturing processes. Not wanting to get 

overloaded and desiring the best allocation of 
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computing resources, the edge servers can offload 

tasks wisely to the cloud servers via high-speed 

wired links so that there is harmony in the 

computing resource allocation. 
 

C. Cloud Layer: The cloud layer is filled by cloud 

servers’ rich in computing and storage resources 

that simultaneously serve users in different 

geographical regions. This introduces data 

transmission issues because of the multiple users 

sharing the same resources and the large distances 

involved in data transmission using these powerful 

but remote cloud resources. Thus, overcoming the 

issues is a part of whole manuscript multi-

objective optimization. 
 

3.1.2 Multi-objective Approach: 
whole manuscript architecture balances the multi-
objective requirements of intelligent 
manufacturing lines using intelligent task 
offloading considering computing power, energy 
cost, and latency. The most appropriate layer, 
whether it's the agile edge for low-latency 
processing or the robust cloud for intensive 
computations, is dynamically allocated to the tasks 
while ensuring minimum energy consumption and 
efficient utilization of resources. This dynamic task 
allocation is guided by the imperatives of 
production efficiency, resource optimization, 
energy conservation, and quality assurance—
hence setting up an agile, responsive, and multi-
objective-driven framework for smart 
manufacturing. 
In the following sections, whole manuscript will go 
into the finer details of this architecture, showing 
how it can be transformative for smart 
manufacturing lines. whole manuscript shall show 
how it shapes these manufacturing environments 
into agile ecosystems driven by multiple objectives 
while harvesting the full potential of both cloud and 
edge computing. Elaborating on top of the models 
presented in the study [27], whole manuscript will 
further detail the proposed CESMA approach. 

 
 
 
 
 
 
 
 
 

 
Figure 1: Proposed CESMA Model 

 

3.1.3 Proposed CESMA Approach 
Indeed, as noted above, the manuscript proposes 
CESMA by smoothly combining two potent 
methods: NSGA II and IMBO. The whole manuscript 
takes advantage of these potent methods in a 
complementary manner to acquire an improved 
task scheduling method for manufacturing lines, 
which will be detailed in the following sections. 
 

A. Performance of NSGA II in CESMA 
The NSGA is a multi-objective optimization 
algorithm for solving complex optimization 
problems with multiple conflicting objectives. The 
NSGA algorithm can also be applied to the problem 
of task scheduling within smart manufacturing 
lines to find an optimal scheduling solution for 
considering multiple objectives like production 
efficiency, resource utilization, energy 
consumption, and quality assurance. All 
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discussions and experiments are addressed in the 
study [15]. 

B. Algorithm 1: Initialization of Resource 

Scheduling Population 

The initialization step is very critical in NSGA for 
the application of smart manufacturing lines. First, 
NSGA randomly assigns tasks to available 
computing resources to form an initial population 
of scheduling schemes. This random distribution 
might seem aimless, but it brings diversity to the 
population. This diversity is significant in 
manufacturing, since it harbors a variety of 
resource allocations and task schedules. Diversity 
is significant for NSGA, as it allows exploration of a 
large and diverse solution space. Starting from a 
broad initial solution spectrum, NSGA has a better 
chance of finding good scheduling strategies 
adaptable to the multidimensional challenges 
arising in smart manufacturing environments. 
Require:  𝑣𝑚, 𝑡,𝑚, 𝑛, 𝑁 

Ensure Resource scheduling schemes x 

Step 1: 𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑁 𝑑𝑜 

Step 2: 𝑓𝑜𝑟 𝑗 =  1 𝑡𝑜 𝑛 𝑑𝑜 

Step 3: Randomly select a task 𝑡𝑗And assign it to 

computing resource 𝑣𝑚𝑘 , 𝑣𝑚𝑘  ∈ 𝑣𝑚, 0 ≤  𝑘 ≤

𝑚, 𝑡𝑗 ∈ 𝑡  

Step 4: Generate a task scheduling scheme 𝑥𝑖  

Step 5: end for 

Step 6: end for 

Step 7: Generate a new initial population of 

scheduling scheme 𝑥 

Step 8: return 𝑥 
The algorithm is designed to initialize a population 
of scheduling schemes for tasks in the context of 
smart manufacturing. It works with a given set of 
parameters and objects, including available virtual 
machines 𝑣𝑚, a list of tasks, , 𝑡, the total number of 
virtual machines 𝑚, the total number of tasks, , 𝑛 , 
and the desired population size, 𝑁. In each 
iteration, the algorithm goes through the process of 
constructing this population 𝑥 of scheduling 
schemes. First, it randomly selects a task. 𝑡𝑗 From 

the set of available tasks 𝑡. This random selection 
ensures diversity in the assignment of tasks to 
resources. Next, the chosen task 𝑡𝑗 is assigned to a 

computing resource 𝑣𝑚𝑘 . The selection of the 
specific virtual machine 𝑣𝑚𝑘  It is also random, and 
it is drawn from the available virtual machines 𝑣𝑚. 
Importantly, this assignment process considers 
various virtual machines, allowing for the 
exploration of different resource allocations. Once 

tasks are allocated to virtual machines, a task-
scheduling scheme 𝑥𝑖  Is generated. 
In general, this algorithm provides a basis for the 
initial population of diverse scheduling solutions, 
which is essential in solving the complex and 
dynamic scheduling problems encountered in 
smart manufacturing environments. 

C. Algorithm 2: Calculation of the 

Chromosome Distribution and Fitness 

of a Scheduling Scheme 

In NSGA, a scheduling scheme's chromosome 
distribution and fitness calculation are used to 
calculate a fitness value for each scheduling 
scheme, which represents how well it conforms to 
predefined objectives such as production 
efficiency, resource utilization, energy 
consumption, and quality assurance. Such a fitness 
evaluation lets NSGA segregate reasonable 
solutions from bad ones. It helps in the diversity of 
scheduling schemes in solution space, maintaining 
diversity in a population. In this way, it avoids a 
premature convergence to suboptimal solutions 
and explores wide ranges of schedules, thereby 
maintaining a high possibility of discovering 
Pareto-optimal solutions in NSGA. 
Require: Current task scheduling set 𝑄(𝑡) 

Ensure: The matrix of density value 𝐷(𝑡), distance 

value 𝐷𝐼(𝑡) 

and neighborhood relation in individuals set 

𝑅 

Step 1: 𝑐 =  0 

Step 2: while not end of 𝑄(𝑡), do 

Step 3: 𝑐 =  𝑐 +  1 

Step 4: end while 

Step 5: for 𝑖 =  1 𝑡𝑜 𝑚 𝑑𝑜 

Step 6: 𝐷𝑖(𝑡) = 0 

Step 7: 𝐷𝐼𝑖(𝑡) = 0 

Step 8: for 𝑗 =  1 𝑡𝑜 𝑛 𝑑𝑜 

Step 9: if 𝑖 ≠ 𝑗 𝑎𝑛𝑑 [𝑄[𝑖], 𝑄[𝑗] < 𝑅)𝑡ℎ𝑒𝑛 

Step 10: Calculate 𝐷𝑖,𝑗(𝑡)by Fitness function 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑧1, 𝑧2) = {
𝑧1 = min(𝑇𝑡𝑜𝑡𝑎𝑙)

𝑧2 = min(𝐶𝑡𝑜𝑡𝑎𝑙)
 

Step 11: Calculate𝐷𝐼𝑖,𝑗(𝑡)by 𝑅𝑡 =

{
 
 

 
 

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛

1+exp(
𝑎(𝑅

(𝑡−1)−𝐷min(𝑡)

𝐷𝑎𝑣𝑔(𝑡)−𝐷𝑚𝑖𝑛(𝑡)
)

+ 𝑅𝑚𝑖𝑛

𝑅𝑚𝑖𝑛,𝑅(𝑡−1)<𝐷𝑚𝑖𝑛 ,

                                                      𝑅(𝑡−1) ≥ 𝐷𝑚𝑖𝑛(𝑡)
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Step 12: Record the neighborhood relationship 

between individuals: 𝑅𝑖,𝑗(𝑡) 

Step 13: end if 

Step 14: end for 

Step 15: end for 

Step 16: return 𝑅(𝑡) 
This algorithm calculates the density value, 
distance value, and neighborhood relationships of a 
set of task-scheduling solutions. First, it initializes a 
counter c to keep track of the number of tasks in the 
scheduling set. So long as there are tasks in the set, 
the counter increments by one to make sure that 
each task is considered. Then arrays 𝐷𝑖(𝑡)  and 
𝐷𝐼𝑖(𝑡) that are initialized for each machine and a 
base to record values for density and distances of 
nodes. Then it iterates upon the machine, task 
combination such that for a pair, checking the 
distance in between a pair of tasks as it falls under 
a threshold that is predetermined i.e, 𝑅 as 
indicated. The density value 𝐷𝑖,𝑗(𝑡) is computed by 

the algorithm if the condition is met, through a 
fitness function that represents how good tasks are 
assigned to machines. It also computes the distance 
value 𝐷𝐼𝑖,𝑗(𝑡), which is influenced by parameters 

such as the range adjustment factor R^t, previous 
distance values, 𝐷𝑚𝑖𝑛(𝑡), 𝐷𝑎𝑣𝑔(𝑡), among others. 

This distance value is further used to model the 
relationships between tasks and machines.   It 
records the neighborhood relations 𝑅𝑖,𝑗(𝑡) between 

scheduling schemes. These relations will help to 
identify those schemes which are close to each 
other in the solution space and, based on that, make 
useful optimization conclusions. Eventually, after 
all machines and tasks have been calculated and 
recorded, the algorithm returns a matrix 𝑅(𝑡) for 
neighborhood relations among individuals 
(scheduling schemes). This matrix gives a holistic 
view of how close different solutions are, 
supporting the optimization process by giving 
promising solutions. 
 

D. Algorithm 3: Resource Scheduling 

Population Maintenance 
Some of the critical uses of the resource scheduling 
population maintenance algorithm within multi-
objective optimization, especially in smart 
manufacturing, are as follows. First and foremost, it 
guarantees population diversity; this is very 
important because it avoids pre-mature 
convergence of the optimization process into one 
solution and ensures that wide spectrum 
exploration by the algorithm is done well. This 

algorithm is also important in pointing out the non-
dominated solutions, those that in at least one 
objective are better and are not worse in any other. 
The algorithm keeps the non-dominated 
scheduling schemes—the Pareto-optimal 
solutions—by ensuring that only high-quality 
alternatives are retained in the population. 
Besides, the algorithm controls the size of the 
population—a very important factor in resource 
management. An extremely large population can 
stress computational resources and slow the 
optimization process. By keeping the population 
size optimal, this algorithm controls the utilization 
of resources. In addition, it enables dynamic, 
intelligent manufacturing by adapting to changed 
objectives. Manufacturing conditions can change 
with dynamic production demand or the 
availability of resources. Such flexibility allows the 
algorithm to respond to such changes by 
readjusting the scheduling schemes to the changed 
manufacturing environment. Finally, this algorithm 
actively supports the exploration and retention of 
high-quality scheduling solutions. It steers clear of 
prematurely converging toward suboptimal 
solutions and actively encourages the discovery of 
improved trade-offs among conflicting objectives. 
In essence, this performance plays a pivotal role in 
ensuring that multi-objective optimization for 
smart manufacturing is characterized by diversity, 
efficiency, adaptability, and the pursuit of 
excellence in scheduling schemes. 
Require: Current task scheduling population 
𝑃𝑜(𝑡), non-dominated task scheduling set 𝑁𝐷𝑆𝑒𝑡, 
the neighborhood relationship 𝑅(𝑡) 

Ensure: Optimized task scheduling 

population 𝑂(𝑡) 

Step 1: 𝑁 =  0 

Step 2: While not the end of 𝑃𝑜(𝑡), do 

Step 3: 𝑁 =  𝑁 +  1 

Step 4: end while 

Step 5: Delete index set 𝐷 =  ∅ 

Step 6: 𝑖 =  1 

Step 7: 𝑤ℎ𝑖𝑙𝑒 𝑖 >  𝑁 𝑑𝑜 

Step 8: Sort in descending order according to the 
neighborhood density 𝐷(𝑡), 
Step 9: if (𝐷𝑖−1(𝑡) ≠ 𝐷𝑖(𝑡)) then 

Step 10: 𝐷 =  𝐷 ∪  𝑀𝑎𝑥(𝐷𝑖−1(𝑡), 𝐷𝑖(𝑡)) 

Step 11: else if (𝐷𝑖−1(𝑡) == 𝐷𝑖(𝑡)𝑎𝑛𝑑 𝐷𝐼𝑖−1(𝑡) ≠

𝐷𝐼𝑖(𝑡)) then 

Step 12: 𝐷 =  𝐷 ∪  𝑀𝑖𝑛(𝐷𝐼𝑖−1(𝑡), 𝐷𝐼𝑖(𝑡)) 

Step 13: end if 

Step 14: 𝑓𝑜𝑟 𝑗 =  1 𝑡𝑜 𝑛 𝑑𝑜 
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Step 15: if (𝐷𝑗 , 𝑃𝑜𝑗(𝑡)  ∈  𝑅(𝑡) then 

Step 16: 𝐷𝑗(𝑡) = 𝐷𝑖(𝑡) − 1 

Step 17: 𝐷𝐼𝑖(𝑡) = 𝐷𝐼𝑖(𝑡) − 𝐷𝑗  

Step 18: end if 

Step 19: end for 

Step 20: 𝑖 =  𝑖 +  1 

Step 21: end 𝑤ℎ𝑖𝑙𝑒𝑁𝐷𝑆𝑒𝑡 =  𝑃𝑜(𝑡)  −  𝐷 

Step 22: return 𝑁𝐷𝑆𝑒𝑡 
The following is the algorithm to optimize a 
population of task scheduling solutions for multi-
objective optimization. First, it initializes a counter 
𝑁 =  0; then, it enters a loop that iterates over the 
current task scheduling population 𝑃𝑜(𝑡). For each 
iteration, N is incremented 𝑁 =  𝑁 +  1. An index 
set 𝐷 is initialized to be an empty set. A counter i is 
initialized to one 𝑖 =  1, and another loop is 
entered continuing as long as 𝑖 >  𝑁. Within this 
loop, the scheduling schemes are sorted in 
descending order based on their neighborhood 
density values 𝐷(𝑡). It checks whether the 
neighborhood density of the previous scheduling 
scheme,(𝐷𝑖−1(𝑡) ≠ 𝐷𝑖(𝑡)). If yes, it adds the 
maximum of these densities to the index set 𝐷. If 
the densities are equal but the distance 
values 𝐷𝐼𝑖(𝑡) differ, it adds the minimum distance 
value to 𝐷(𝑡). The algorithm then iterates over all 
tasks and checks if certain conditions are satisfied 
based on the neighborhood relation. If those 
conditions are met, it adjusts the values of density 
𝐷(𝑡) and distance 𝐷𝐼(𝑡). The loop until the 
condition in which 𝑖 > 𝑁 is violated. At last it 
calculates the non-dominated task scheduling set 
𝑁𝐷𝑆𝑒𝑡 by removing the index set 𝐷 from current 
task scheduling population 𝑃𝑜(𝑡) and return this 
optimized set. In essence, this algorithm is very 
important in maintaining diversity, identifying 
non-dominated solutions, and ensuring that the 
task scheduling population aligns with the 
objectives of multi-objective optimization in smart 
manufacturing. It prevents premature convergence 
to suboptimal solutions and ensures a high-quality 
scheduling scheme. 

E. Performance of IMBO in CESMA 

Improved Monarch Butterfly Optimization is a bio-
inspired optimization method based on the 
foraging behavior of the monarch butterfly and has 
been developed delicately to address complex 
optimization problems. It makes an imitation of 
how the monarch butterfly intelligently finds out 
the food resources. IMBO is an improved version of 
the original MBO by enhancing its exploration and 
exploitation abilities; hence, it can be said to be the 

evolution of MBO, where, in CESMA, the 
combination of IMBO with NSGA-II is integrated 
smoothly. NSGA-II is good at crossing the vast 
global solution space and identifying non-
dominated solutions—those optimal in Pareto 
terms. IMBO brings its unique prowess to the table 
by focusing on local optimization and the 
meticulous refinement of potential solutions 
residing in the most promising corners of the 
solution space. Such dynamic synergy of algorithms 
underpins CESMA's formidable optimization 
prowess in smart manufacturing. Further insight 
into IMBO is drawn from the investigation 
presented in [16]. 

F. Algorithm 4 IMBO 

Input:  𝑇𝑎𝑠𝑘 𝑞𝑢𝑒𝑢𝑒, 𝑁𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 𝑡, 𝑛, 𝑚 

Output: The optimal path 

Step 1: Initialize: 𝑝, 𝑚1, 𝑚2, 𝑝𝑒𝑟𝑖, 𝑝, 𝐵𝐴𝑅, 𝜗, 𝜇 

Step 2: Reorder task priority using the merge 

sorting method to get queue 𝛹 

Step 3: 𝑓𝑜𝑟 𝑚𝑏 =  1;  𝑚𝑏 <=  𝑚;  𝑚𝑏 + + 𝑑𝑜 

Step 4: Set an initial value for each monarch 

butterfly. 

Step 5: end 

Step 6: 𝑓𝑜𝑟 𝑡 =  1;  𝑡 <=  𝑡;  𝑡 + + 𝑑𝑜 

Step 7: According to [19] Equation (25), get the task 

assignment sequence. 

Step 8: Evaluate the fitness value of each individual 

according to Equation (14) from [16]. 

Step 9:  Sort the individuals based on their fitness 

values. 

Step 10: Select the optimal path. 

Step 11: Save the two monarch butterflies with the 

best fitness values. 

Step 12: 𝑓𝑜𝑟 𝑚𝑏 =  1;  𝑚𝑏 <=  𝑚1;  𝑚𝑏 + + 𝑑𝑜 

Step 13: Use the DMMO of equation (17) from [16] 

to update 𝑆𝑃1 

Step 14: end 

Step 15: 𝑓𝑜𝑟 𝑚𝑏 =  1 +  𝑚1;  𝑚𝑏 <=  𝑚1 +
𝑚2;  𝑚𝑏 + + 𝑑𝑜 
Step 16: Use the BAO to update 𝑆𝑃2 [16] 

Step 17: end 

Step 18: Combine 𝑆𝑃1 and 𝑆𝑃2 of [16] to generate 

a new population. 

Step 19: Use the two elites to replace the worst two 

individuals. 

Step 20: end 
The algorithm begins with initialization, where key 
parameters like 𝑝, 𝑚1, 𝑚2, 𝑝𝑒𝑟𝑖, 𝑝, 𝐵𝐴𝑅, 𝜗, 𝜇 
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are set. Following this, it reorders the task queue 𝛹 
using a merge sorting method to establish task 
priorities. Monarch butterflies are then initialized 
with initial values. In the main loop, which iterates 
through tasks, a task assignment sequence is 
determined according to Equation (25) from 
reference [19], which combines communication 
and reception times. Fitness for each individual is 
calculated by the Equation (14) in the reference 
[16], and individuals are sorted based on the 
calculated fitness. Among the sorted individuals, an 
optimal path is chosen as the best solution, and the 
two best monarch butterflies bare kept as elites 
based on the fitness values For a subset of the 
monarch butterflies, 𝑚1update SP1 based on the 
DMMO algorithm from Equation (17) of the 
reference [16]. TIn the other subset, m 2, updates, 
the SPs are updated with the AO algorithm. A new 
population is obtained by merging SP1 and SP2 
from [16]. Finally, the two elites previously 
substituted the worst individuals from the 
population. This algorithm incorporates 
prioritizing the tasks, fitness evaluation, sorting, 
and population control to find the best path in the 
CESMA model using the equations from the 
references above to make it more efficient. 
The performance of NSGA-II is thoroughly 
examined in the context of optimizing multi-
objective problems in the paper [15], which covers 
all talks and experiments. The study demonstrates 
how well the algorithm manages trade-offs 
between goals, such as decreasing energy 
consumption and job completion time, and 
obtaining a Pareto-optimal set with enhanced 
variety and convergence. Furthermore, it shows 
how flexible NSGA-II is when used in dynamic 
scheduling circumstances, exhibiting notable 
improvements in task latency reduction and 
resource utilization over conventional techniques. 
Understanding its application and efficacy inside 
CESMA is based on these observations. 
 

G. cross-layer design between NSGA 

and IMBO 
This normally involves integrating the optimization 
capabilities of NSGA with the IMBO algorithm to 
realize better efficiency in task scheduling for the 
cloud-edge environment. The idea here is to 
leverage the powers of the two algorithms to find a 
balance between minimizing delays and 
maximizing resource utilization in the smart 
manufacturing line. The cross-layer design 
combines the exploration power of NSGA with the 

refinement capability of IMBO for robust multi-
objective optimization. 
 

3.1.4 CESMA Algorithm: Centralized 
Expert Supervises Multi- Agents 

Require: N agents 𝜋𝜃1, …, 𝜋𝜃𝑁 observation buffer 
D for multi-agent observations, batch size B 
1: while 𝜋𝜃1, … 𝜋𝜃𝑁 not converged do 
2: Obtain observations 01, …, 0N from the 
environment  
3: Obtain agent’s actions, 𝑎1 = 𝜋θ(o1), … , 𝑎𝑁 =
𝜋𝜃𝑁(𝑜𝑁) 
4: Store the observations together, i.e. put 
(o1,…,oN) in D 

5: if |𝐷| > 𝐵 𝑡ℎ𝑒𝑛 
6: Sample a batch of B multi-agent observations 
[(O1b,…, ONb)]bB=1 
7: Let the centralized expert E lable each 
observation to obtain an action: âib=E(O1b,…,ONb)I 
for i=1,…,N and b=1,…,B. 
8: Form the input-lable pairs [(O1b, â1b),…,(ONb, âNb)] 
bN=1 
9: Perform supervised learning for 𝜋∅I where the 
inputs are (Oib) and the labls are (âib), for i=1,…,N. 
10: end if 
11: Obtain new observations from agent’s actions, 
(O`1,…,O`N), and set O1=O`1,…,ON=O`N 

12: end while 

 
NSGA-II Drawbacks: 
Lack of diversity can cause solutions to converge to 
a small region, limiting the solution variety. 
Slow convergence: High computational cost, 
especially with many objectives, can lead to longer 
runtimes. 
Noise handling: Struggles with noisy environments, 
affecting its robustness. 
IMBO Drawbacks: 
Model dependency: Relies on the quality of the 
surrogate model, which may not generalize well, 
affecting optimization performance. 
Computational cost: High cost of model training, 
especially in high-dimensional spaces. 
Initialization sensitivity: Performs poorly if the 
initial model isn't well-informed, making it 
sensitive to initial conditions. 
Impact on CESMA: 
Diversity and Convergence: Depending on its 
design, CESMA could either mitigate or amplify 
NSGA-II's diversity and convergence issues. 
Modeling and Efficiency: By incorporating more 
advanced or hybrid modeling, CESMA might reduce 
the reliance on imperfect surrogate models. 
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Robustness: With better handling of noise and 
uncertainty, CESMA could outperform both NSGA-
II and IMBO in real-world applications. 
The three-layer hierarchical architecture 
underlying the Cloud-Edge Smart Manufacturing 
Architecture (CESMA) combines cloud, edge, and 
end-device layers to maximize work scheduling in 
dynamic smart manufacturing environments. IIoT 
devices—which gather real-time data—are sent to 
the edge layer for low-latency processing, and local 
decision-making makes up the end-device layer. 
Tasks needing significant computing are offloaded 
to the cloud layer, which offers worldwide system-
wide optimization and great computational 
capability. Based on latency, energy consumption, 
and resource availability, this cross-layer 
architecture dynamically distributes activities 
ensuring scalability, flexibility, and effective 
resource use. CESMA integrates the Improved 
Monarch Butterfly Optimization (IMBO) for local 
refinement and the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) for global optimization 
using a hybrid optimization approach. While IMBO 
perfects Pareto-optimal solutions to improve 
dependability and efficiency, NSGA-II finds these 
solutions by investigating several scheduling 
techniques. This mix guarantees a harmony 
between task completion time, energy use, and 
manufacturing efficiency. In smart manufacturing 
systems, CESMA offers a strong, scalable, and 
dependable solution by dynamically adjusting to 
changes in job volume and system load for multi-
objective task scheduling. 
 

4. Results and Experiments 

4.1 Simulation Setup 

The whole manuscript developed a detailed 

simulation framework in MATLAB, specifically 

designed to thoroughly test the proposed CESMA's 

performance. The presented simulation 

environment represents one of the most crucial 

validation tools for the whole manuscript's new 

task-scheduling approach—tuned to the highest 

order of fineness to the peculiar needs of the smart 

manufacturing contexts. This set was inspired and 

adapted from [28]. This comparison of CESMA with 

other existing scheduling alternatives, like IPSO, 

IACO, RR, and HH, would provide insights related to 

the performance and superiority of the same. 

The suggested Cloud-Edge Smart Manufacturing 
Architecture (CESMA) was validated by building an 
extensive simulation environment. The simulation 

setup, which is designed to replicate actual smart 
manufacturing situations, includes task datasets, 
resource setups, and assessment parameters. 
 

4.1.1 Task Completion Time 
Figure 2 shows that CESMA always achieves 
smaller task completion times for a range of task 
volumes, which further explains its efficiency and 
effectiveness in the scheduling of tasks. Even with a 
small number of tasks, CESMA finishes them 
quickly and proves to be good at dealing with tasks 
in smart manufacturing environments. Impressive, 
CESMA handles the increase in tasks well, thus 
showing good scalability and flexibility. This stable 
capability of keeping the completion times at low 
levels proves that CESMA can schedule smart 
manufacturing tasks under diverse objective 
balances. On the other hand, IPSO works relatively 
efficiently using small sets of tasks but incurs 
growing completion times with increasing 
numbers of tasks. IPSO might be OK in situations 
with a small number of tasks but doesn't scale. 
Similarly, IACO (Improved Ant Colony 
Optimization) is better than IPSO in terms of 
efficiency with smaller sets of tasks and larger 
completion times in more significant scenarios. 
Both IPSO and IACO could be more suitable in 

scenarios where there are fewer tasks. On the 
other hand, RR always reflects an increased 
completion time when more tasks are needed, 
hence showing inefficiency while handling a larger 
volume. RR does not seem to handle large-scale 
scheduling well. In contrast, HH also has significant 
increases in completion times with increasing 
volume, which may indicate some kind of limitation 
in large-scale scheduling. 
The task completion time for each algorithm is 
calculated by submitting a range of tasks starting 
from 10 to 50 tasks in total. Algorithm RR achieves 
task completion in 12 seconds, Algorithm IPSO in 
11 seconds, Algorithm IACO in 10.2 seconds, and 
Algorithm HH in 9 seconds and the proposed 
algorithm CESMA completed the task in 8 seconds 
for the first set of 10 tasks. This trend continues for 
the remaining set of tasks whereas the final set of 
50 tasks the following are the task completion time 
attained by all the compared algorithms. Algorithm 

RR achieves task completion in 24 seconds, 
Algorithm IPSO in 21 seconds, Algorithm IACO in 
20 seconds, and Algorithm HH in 19 seconds and 
the proposed algorithm CESMA completed the task 
in 18 seconds. Among the compared five 
algorithms, the proposed CESMA algorithm 
demonstrates the best performance with the 
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shortest task completion time, followed by 
Algorithm HH. Algorithm RR takes the longest time 
to complete the task. 

 
Figure 2: Task completion time comparison  

 
4.1.2 Energy Consumption Analysis 

This section will include energy consumption rates 
expressed as the energy consumed per unit task 
volume. For comparison, each algorithm's 
performance will be evaluated under the same task 
load. 
Energy Consumption Rate (ECR) Formula 

𝐸𝐶𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 (𝐽)

𝑇𝑎𝑠𝑘 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑀𝐵)
 

Where: 

Energy Consumed: Includes edge and cloud device 

consumption. 

Task Volume: Total size of tasks processed in MB. 
 
Table 1. Performance Comparison 
 

Algorithm Task Volume 

(MB) 

Energy 

Consumed 

(J) 

ECR 

(J/MB) 

NSGA-II 1000 500 0.50 

IMBO 1000 450 0.45 

CESMA 

(proposed) 

1000 400 0.40 

 
The proposed CESMA algorithm exhibits the lowest 
energy consumption rate (0.40 J/MB), 
demonstrating improved efficiency by effectively 

balancing task allocation between cloud and edge 
systems. 
 
 

4.2 Total Execution Time 
Assume that the cross-node execution of 
computing tasks is not considered, that the task 
submitted by the terminal user is the minimum unit 
of task allocation by the scheduler, that the 
terminal user completes the decomposition of large 
computing tasks, and that the tasks are 
independent, without communication and data 
synchronization, thus avoiding the performance 
degradation caused by frequent communication 
between tasks. According to the assumptions that 
tasks in the task set are independent and not 
decomposable, the set is called a meta task set. 
 

4.2.1 Energy Consumption 
It is clear from Figure 3 that CESMA is extremely 
good at keeping energy consumption lower when 
the volume of tasks increases, compared to other 
models. This shows its aptitude for optimal energy 
utilization for smart manufacturing. Moreover, 
even with a large workload, CESMA always shows 
good efficiency, proving its adaptability and 
scalability. On the other hand, IPSO, IACO, and RR 
have a higher energy consumption value, 
increasing with the number of tasks. The trend is 
that these algorithms may not be so good at 
efficiently using energy resources, especially for 
larger tasks. While IPSO and IACO work reasonably 
well for smaller tasks, they have some limitations in 
scaling up their efficiency. RR's continued high 
energy consumption, especially in scenarios with 
many tasks, flags inefficiency in handling large 
workloads. 
Interestingly, HH, while placed closely to CESMA in 
the figure, exhibits a good characteristic: It tends to 
decrease energy consumption with an increase in 
the volume of tasks; hence, it is quite suitable for 
large volumes of tasks besides CESMA. From an 
overall point of view, CESMA's consistent 
achievement of lower energy consumption, even 
under increased volumes of tasks, shows that it can 
make a proper trade-off between energy efficiency 
and scalability in smart manufacturing. 
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Figure 3: Comparison of Energy Consumption  
 

The energy consumption for each algorithm is 
calculated by submitting a total range of tasks from 
100 to 500. Algorithm RR consumes 420 Joules, 
Algorithm IPSO 400 Joules, Algorithm IACO 380 
Joules, and Algorithm HH 360 Joules, while the 
proposed algorithm CESMA consumes 350 Joules 
for the first set of 100 tasks. This trend continues 
for the remaining set of functions with slight 
variation in the performance of the HH algorithm. 
Whereas for the final set of 500 tasks, the following 
are the energy consumption values attained by all 

the compared algorithms: Algorithm RR consumes 
600 Joules, Algorithm IPSO consumes 580 Joules, 
Algorithm IACO, and HH consumes 5757 Joules, 
while the proposed algorithm CESMA consumes 
550 Joules. Among the compared five algorithms, 
the proposed CESMA algorithm demonstrates the 
best performance with the lowest energy 
consumption, followed by Algorithm HH. Algorithm 
RR consumes the highest energy to complete the 
tasks.

 
 

4.2.2 Quality Assurance based on 

monitoring defect rates 
In Figure 4, CESMA consistently outperforms other 
models, maintaining lower defect rates as task 
volume increases in smart manufacturing. This 
highlights CESMA's effectiveness in defect 
monitoring and prevention. Even with increased 
tasks, CESMA continues to stay at lower defects 
rates; hence it shows its ability in error prevention. 
In contrast, IPSO, IACO, RR, and HH show generally 
higher defect rates with increased tasks and hence 
are not that efficient in preventing defects when 
compared to CESMA, mostly for high-task 
scenarios. For smaller tasks, IACO and HH show 
suitability; however, defect prevention becomes 
hard with an increase in task volume. RR showed 
consistent higher rates, indicating poor error 
prevention ability for tasks with many elements.  

The defect rates for each algorithm are calculated 
by submitting a range of tasks starting from 100 to 
500 tasks in total. Algorithm RR has a defect rate of 
2.8%, Algorithm IPSO 2.5%, Algorithm IACO 2.2%, 
and Algorithm HH 2.0%, while the proposed 
algorithm CESMA achieves a defect rate of 2.0% for 
the first set of 100 tasks. This trend continues for 
the remaining set of tasks. In contrast, for the final 
set of 500 tasks, the following are the defect rates 
attained by all the compared algorithms: Algorithm 
RR has a defect rate of 1.9%, Algorithm IPSO 1.6%, 
Algorithm IACO 1.3%, algorithm HH 1.4%, while 
the proposed algorithm CESMA achieves a defect 
rate of 1.2%. Among the compared five algorithms, 
the proposed CESMA algorithm demonstrates the 
best performance with the lowest defect rate, 
followed by Algorithm IACO. Algorithm RR has the 
highest defect rate in completing the tasks.
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Figure 4: Defect Rates Monitoring Comparison  
 

4.2.3 Reliability 

In Figure 5, CESMA is always better than its 
counterparts in tasks numbering few or many. This 
steadfast dependability is what gives CESMA its 
great power in keeping faults, interruptions, and 
failures in the system as low as possible, regardless 
of how complicated the manufacturing process is. 

What singles CESMA out is its strength in rising 
workloads. As tasks multiply, CESMA's reliability 
remains a constant. This resilience is critical in the 
real manufacturing world, where demand can vary 
hugely from one time to another. CESMA's 
reliability doesn't waver; it's the bedrock on which 
manufacturing operations can rely. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Reliability Comparison 
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One of the great features of CESMA is its ability to 
prevent errors. Even with increasing volumes of 
tasks, CESMA maintains low rates of defects, 
outperforming RR, IPSO, IACO, and HH consistently. 
This mastery over error avoidance is one of the 
most crucial enablers for ensuring product quality 
and preventing expensive production disruptions. 
Hiccups. CESMA is efficient and reliable, which 
contrasts with some algorithms that sacrifice 
reliability when the workload becomes more 
extensive; it doesn't sacrifice one for the other. This 
balance is quite vital for smooth and reliable smart 
manufacturing systems. 
The reliability of each algorithm is calculated by 
submitting a range of tasks starting from 100 to 
500 tasks in total. Algorithm RR achieves a 
reliability of 88%, Algorithm HH 89%, Algorithm 
IACO 90%, and Algorithm IPSO 91%, while the 
proposed algorithm CESMA achieves a reliability of 
95% for the first set of 100 tasks. This trend 
continues for the remaining set of tasks. In contrast, 
for the final set of 500 tasks, the following are the 
reliability values attained by all the compared 
algorithms: Algorithm HH achieves a reliability of 
75%, Algorithm RR 76%, Algorithm IACO 77%, 
Algorithm IPSO 78%, while the proposed algorithm 
CESMA achieves a reliability of 81%. Among the 
compared five algorithms, the proposed CESMA 
algorithm demonstrates the best performance with 
the highest reliability, followed by Algorithm IPSO. 
Algorithm HH has the lowest reliability in 
completing the tasks. 
 
4.3 Method of Validation 

The following steps are part of the validation 
process: 
Benchmarks were chosen from well-known smart 
manufacturing line job scheduling scenarios. These 
consist of established simulation models and 
standard datasets. 

performance indicators: 
Task Completion Time (TCT): Calculates the typical 
amount of time needed to finish tasks. 
Resource Utilization (RU): Assesses how well edge 
and cloud resources work. 
Energy Efficiency (EE): Determines the energy used 
for each process or task. 
The outcomes were contrasted with other 
scheduling strategies, like edge-only and cloud-
only options. 
 
 

5 Conclusion 

Lastly, the thorny task scheduling issues in the 
dynamic environment of smart manufacturing are 
discussed. In this paper, whole manuscript 
introduces CESMA, which combines the strengths 
of NSGA-II and IMBO to give a multi-objective 
approach excelling in efficiency, scalability, and 
reliability enhancement in manufacturing 
operations. With extensive evaluation using a 
variety of metrics, CESMA showed its effectiveness. 
It has superior task completion times, meaning it is 
efficient, scalable, and adaptive to the change in 
task volume. CESMA was better than other 
optimization algorithms, including IPSO, IACO, RR, 
and HH, in terms of energy consumption, defect 
rate prevention, and general reliability. Its ability to 
balance efficiency and reliability positions it as an 
optimal solution for complex real-time industrial 
environments. Looking ahead, the future scope of 
CESMA looks very promising. 
By using a hybrid optimization technique that 
combines genetic algorithms and simulated 
annealing, the study verifies a multi-objective task 
scheduling strategy for optimizing cloud-edge 
integration in smart manufacturing, addressing 
latency, resource usage, and energy efficiency. 
Performance measurements and realistic 
simulation situations, such as dynamic workloads 
and resource breakdowns, support its effective 
trade-off balancing. With future potential in 
adaptive learning for increased scheduling 
efficiency, the method provides an Industry 4.0 
solution that is scalable, durable, and energy-
efficient. 
Future research will refine the algorithm, optimize 
parameters, and enhance adaptability to the 
evolving demands of smart manufacturing. 
Integration with emerging IoT and AI technologies 
promises improved task scheduling. As Industry 
4.0 reshapes manufacturing, CESMA remains at the 
forefront, driving innovation for the smart factories 
of the future. 
Task completion time, energy use, defect rate, and 
dependability are among the five measures where 
the suggested CESMA algorithm excels above the 
others. Algorithm HH (9 seconds and 19 seconds, 
respectively) and Algorithm RR, which take the 
most time, are surpassed by CESMA, completing 10 
tasks in 8 seconds and 50 tasks in 18 seconds. 
Whereas Algorithm RR uses the most, 420 and 600, 
respectively, CESMA uses the least, 350 Joules for 
100 and 550 for 500 tasks. Starting at 2.0% for 100 
jobs and declining to 1.2% for 500 tasks, CESMA 
maintains the lowest defect rates among Algorithm 

https://ajes.uoanbar.edu.iq/


34                                                                                         Ahmed Najat Ahmed, et. al / Anbar Journal of Engineering Science, 16, 1, (2025) 21 ~ 35 

 

 

Optimizing Cloud-Edge Integration for Task Scheduling in Smart Manufacturing Lines: A Multi-objective Method                    (Ali Hasan Husien) 

RR, which has 2.8% and 1.9% for the same task 
ranges. Algorithm HH has the lowest reliability, 
ranging from 89% to 75%; CESMA has the highest, 
beginning at 95% for 100 tasks and maintaining 
81% for 500 tasks. 
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