This study assessed the temporal and spatial water quality variability to reveal the characteristics of the Shatt Al-Arab River, Basrah, Iraq. A total of 14 water quality parameters (water temperature (T), pH, electrical conductivity (EC), Alkanets (Alk), total dissolved solids (TDS), turbidity (Tur), total hardness (TH), calcium (Ca), magnesium (Mg), chloride (Cl), sulphate (SO4), total suspended solids (TSS), sodium (Na), and potassium (k)) were analyzed Use of multivariate statistical methods in a total of three stations for the period 2016-2017. In this study was use a statistical approach to determine the water quality using the Pearson Correlation Index (PCI), Principal component analysis (PCA), and Factor Analysis (FA) were used to analyze the data. Main water pollutant sources were wastewater from agricultural drainage and industrial wastewater. Significant relationships recorded between the investigated parameters based on the results of PCI, at the 0.01 and 0.05 significance levels. Per the FA results, 77.1 % of the total variance explained by two factors.
The published studies about the water quality of Euphrates River in Iraq till now have been reviewed critically. The revision of the published researches depend upon several bases including the period of samples collection, the number of sampling stations, water samples collection method, the analytical techniques employed to measure and analyze the results. This critical study concluded that the need to follow a specific protocol in selection sampling sites, how the samples are collected, how samples are analyzed, and pay attention to quality assurance and quality control during sample collection, preservation and analytical procedures.
This research focuses on studying the impact of different sources of wastewater, such as do-mestic, industrial, agricultural, etc. upon groundwater. The swamp of contaminated water collec-tion within the Al-Anbar University area was taken as a case study for this research. This swamp has a pond that works as a collection basin for different sources of wastewater mainly domestic waste coming from leakage of contaminated water from the septic-tank of the residential com-plex of students. This contaminated water will leak over time within the folds of soil due to per-meability and the effect of land attraction and reach the levels of groundwater.The presence of polluted water near groundwater is an environmental hazard and harmful because this leakage water has different diseases and germs, which could pose a danger to human health. Different samples of these sources were taken from different places at different times and some physical, chemical, and biological tests were then conducted. Wastewaters characterization was also investigated in this study to make an assessment for water quality and find out a proper treatment method. Data obtained from this study show different levels of pollutants, which could highly affect groundwater quality. A proper and advanced treatment method was also proposed in this study, depending on the wastewater characterization results. The purpose of this research is wastewater treatment using the physical method with coagulation and Flocculation processes with local coagulants to reduce pollutants impact on groundwater.The results showed the addi-tion of alum at 35 mg/l increased the removal efficiency by 80.7% at the settling time of 60 min, and the addition of 35 mg/l of the lime increased the removal efficiency by 63.9% at the same settling time.It has been proven that the use of alum is more effective than lime for sedimenta-tion suspended matter. The optimum dosage and settling time are 20 mg/l and 60 min respec-tively.
Management of water resources become one of the most important subjects in the human's life. The water sustains life on earth, therefore; more care for water management is necessary. In the last years, studies show water use will be more in the world as result of rapid increase in population, industrialization, and urbanization etc. The evaporation losses from dam's reservoirs and lagoon form very huge losses in water resources. The annual evaporation depth losses in Iraqi Western Desert is about (2.25 -3) meter, this depth store the highest percentage of the small dams. Sub-surface storage reduces evaporation losses and maintains water quality by minimizing salt concentration. In present study, three tanks are used to simulate the subsurface reservoirs to study the effectiveness of underground storage on reducing the evaporation loss. Each tank have squares cross section tanks of (80) cm length and (40) cm depth and filled up to (34) cm with different graded soil (labeled as A, B with coarse soil, and D with fine soil) to simulate the storage below the ground. While the forth tank filled with water (labeled as C) to represent the reservoir of direct evaporation for comparison study. The present study considers three parameters that can controlled the evaporation from subsurface reservoirs: (a) temperature variation, (b) water table variation, and (c) material properties such as porosity. The field study continues for four months, it was started at Jun.11, 2016 and ended at Dec. 15, 2016 in the Erbil city at north of Iraq. The results showed evaporation losses are reduced by using subsurface storage reservoir with gravel in comparison with free surface evaporation. The evaporation losses are reduced about 46 % , 39% , 64% when the water table below gravel surface range from 5 to 10 cm , while at 20 cm depth of the water table the evaporation reduction is about (85 % to 86% 95%) from A, B and D tanks with porosity 0.65 ,0.67 and o.35 for A ,B and D tanks, respectively..