Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for solar-collector

Article
Artificial Neural Networks Modeling of Heat Transfer Characteris-tics in a Parabolic Trough Solar Collector using Nano-Fluids

T. A. Salih, S. A. Mutlag, H. K. Dawood

Pages: 245-255

PDF Full Text
Abstract

In the current article, an experimental investigation has been implemented of flow and heat transfer characteristics in a parabolic trough solar collector (PTSC) using both nano-fluids and artificial neural networks modeling. Water was used as a standard working fluid in order to compare with two different types of nano-fluid namely, nano-CuO /H2O and nano-TiO2/ H2O, both with a volume concentration of 0.02. The performance of the PTSC system was eval-uated using three main indicators: outlet water temperature, useful energy and thermal efficiency under the influence of mass flowrate ranging from 30 to 80 Lt/hr. In parallel, an artificial neural network (ANN) has been proposed to predict the thermal efficiency of PTSC depending on the experimental re-sults. An Artificial Neural Network (ANN) model consists of four inputs, one output parameter and two hidden layers, two neural network models (4-2-2-1) and (4-9-9-1) were built. The experimental results show that CuO/ H2O and TiO2/H2O have higher thermal performance than water. Overall, it was veri-fied that the maximum increase in thermal efficiency of TiO2/H2O and CuO/H2O compared to water was 7.12% and 19.2%, respectively. On the oth-er hand, the results of the model 4-9-9-1 of ANN provide a higher reliability and accuracy for predicting the Thermal efficiency than the model 4-2-2-1. The results revealed that the agreement in the thermal efficiency between the ANN analysis and the experimental results about of 91% and RMSE 3.951 for 4-9-9-1 and 86% and RMSE 5.278 for 4-2-21.

Article
Experimental and Theoretical Study of a Parabolic Trough Solar Collector

Tadahmun Ahmed Yassen

Pages: 109-125

PDF Full Text
Abstract

An experimental and theoretical study has been conducted to determine the thermal efficiency of a parabolic trough solar collector. The experiments have been performed during winter and summer at Tikrit-Iraq. The solar radiation of Tikrit University was calculated theoretically and a theoretical study was performed by using FORTRAN 90 program. The dimensions and specifications of the collector were entered to the program to determine the theoretical thermal efficiency. It has been found the experimental thermal efficiency of collector is less than the theoretical one in percentage between (7-15) .So the increase in water mass flow rate leads to an increase in the thermal efficiency, and there is no significant change in thermal efficiency when the water mass flow rate becomes more than forty kilograms per hour.

Article
Experimental Study of Parabolic Trough Receiver with Perforated Twisted Tape Insert Using Fuzzy Model Analysis

S. M. Naif, S. A. Mutlag, W. H. Khalil, H. K. Dawooda

Pages: 130-138

PDF Full Text
Abstract

A solar water heating system has been fabricated and tested to analyze the thermal performance of Parabolic Trough Solar Collector (PTSC) using twisted tape insert inside absorber tube with twisted ratio about TR=y/w=1.33. The performance of PTSC system was evaluated by using three main important indicators: water outlet temperature (Tout), useful energy and thermal efficiency (ηth) under the effect of mass flow rate (ṁ) ranges between 0.02 and 0.04 Kg/s with the corresponding of Reynolds number (Re) range (2000 to 4000). In a parallel, a fuzzy-logic model was proposed to predict the thermal efficiency (ηth) and Nusselt number (Nu) of PTSC depending on the experimental results. The fuzzy model consists of five input and two output parameters. The input parameters include: solar intensity (I), receiver temperature (Tr), water inlet temperature (Tin), water outlet temperature (Tout) and water mass flow ( ) while, the output include the thermal efficiency (ηth) and Nu. The final results indicate that, owing to the mixture of the swirling flow of the perforated twisted-tape insert, the perforated twist tape insert enhances the heat transfer characteristics and the thermal efficiency of the PTSC system. More specifically, the use of perforate twist tape inserts enhanced the thermal efficiency by 4% to 4.5% higher than smooth absorber tube. Also, the predicted values were found to be in close agreement with the experimental counterparts with accuracy of ~92 %. So, the suggested Fuzzy model system would have high validity and precision in forecasting the success of a PTSC system compared to that of the traditional model. Pace, versatility, and the use of expert knowledge for estimation relative to those of the traditional model are the advantages of this approach

Article
Prediction of Thermal Characteristics For Solar Water Heater

Mohamaad A. Fayath, Saad T. Hamidi

Pages: 18-32

PDF Full Text
Abstract

The research studies the prediction of thermal characteristics for open designer shape of solar collector of flat plate of area 2.34m2, connected to water tank of 85 liter capacity . Mathematical model was represented and made the system of private accounts, transactions and through the creation of mathematical equations and solved numerically using the method of Finite Difference Method (FDM).The results of research is to obtain hot water at average temperatures up to 520C at mid-day during February month, as the water temperature is at its lowest value in this month in Baghdad city, with an average efficiency of the system up to 53.6% .This predictive study is compared with a previous measurement work and confirmed that the results match well.

Article
Thermal Conductivity Enhancement of Hybrid Epoxy Composites Using Copper Oxide Nanoparticles and Carbon-Nanotubes

Laith Abdullah, Mustafa Al-hadithi, Abbas Faris

Pages: 10-17

PDF Full Text
Abstract

In this current experimental research, the amount of improvement in the thermal conductivity of HEC hybrid epoxy resins was studied by adding copper oxide nanoparticles CuONp and carbon nanotubes (CNTs) as hybrid additives in different proportions to select the sample with the highest thermal conductivity value to include it in the design of the Flat Plate Solar Collector FPSC as Thermal Interface Material TIM reduces thermal resistance between the absorber plate and the tube. Four groups of samples were prepared using a mass balance with a sensitivity of 0.01g and a magnetic mixing device, then poured into cubic plastic molds to take the shape of the sample. The first group consists of one sample of pure epoxy to calibrate the thermal properties testing device through it. The second group consists of five samples of epoxy loaded with CNTs by weight (1, 3, 5, 7.5, 10) %. The third group consists of five samples of epoxy loaded with CuONp with weight percentages of (1, 3, 5, 7.5, 10) %. The fourth group consists of five samples of epoxy loaded with CuONp and CNTs combined in weight percentages of (1, 3, 5, 7.5, 10) %. The thermal conductivity of the samples was measured experimentally using the hot disk analyzer technique to measure thermal specifications. After comparing the thermal conductivity values of the samples, the highest value was 1.57 W/mK for the HEC sample loaded with 10% CNTs, which represents 9.23 times higher than pure epoxy

1 - 5 of 5 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.