Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for seismic-load

Article
Progressive Collapse Analyses of Buildings Subjected to Earthquake Loads

Dr. Fareed H. Mosawi, Dr. Haider S. Al Jubair, Mr. Hussein A. Ahmed

Pages: 10-19

PDF Full Text
Abstract

Progressive collapse is a partial or total failure of a building that mostly occurs when the build-ing loses primary structural elements (typically columns) due to accidental or natural hazards. The failure of structures due to an earthquake is one of the most important and frequent types of progressive collapse. In this study, the finite element method is used to assess the response of multistory reinforced concrete buildings subjected to column loss during an earthquake. Three-dimensional nonlinear dynamic analyses are carried out using SAP2000 V.20 program. The ef-fects of different parameters on the progressive collapse behavior are investigated, namely: the location of the removed column within the ground floor; the method of column removal (sudden, in two-steps, and in four-steps) and the removal timing during the earthquake. It is demonstrated that the collapse occurs when all or most of the hinges at the bases of the ground floor columns reach their collapse level. The chosen column removal timing and policy affect the structural behavior considerably. It is realized that, the risk of building collapse increases when the removal timing harmonizes with the peak ground acceleration timing. Based on the adopted earthquake characteristics and building configurations, it is found that, the two steps removal scenario is the most dangerous one.Keywords:Progressive collapse, Concrete buildings, Seismic load, Nonlinear dynamic analysis, Plastic hinge.© 2014

1 - 1 of 1 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.