Due to the expansion of industrial operations globally in recent years, waste output has risen. So these wastes must be reduced by recycling and reusing to achieve environmentally friendly buildings and find various alternative materials in critical cases. The statistical indicators are used as practical study including Multiple linear regression (MLR) and artificial neural network (ANN) models. The study's goals were to assess the effectiveness of granite waste (GW) as a replacement for cement, sand, plastic, and binder in specific building applications and the relationships between MLR and ANN approaches. Results show the efficiency of adding granite waste to some construction stages and replacing it with cement in the mixture and examining its strength, it gave excellent results in addition to good results for its use as a binder in cement mortar, while the results were weak when used as a substitute for sand and plastic in insulator because it's classified as fine sand, Therefore, it cannot be used as a substitute for sand in the construction. The statistical models give an effective indicator to use GW as an alternative material ( binder and cement) based on the coefficient of correlation (R2) for the two models MLR and ANN equal to 83.4 % and 80 % respectively.
In this work the effect of degassing on hardness and microstructure of aluminum recycled cans using aluminum beverage cans scrap from different locations in Baghdad wastes had been studied. Aluminum cans were shredded and ground into small pieces. It was processed through a gas fired to eliminate the coated layer (paint or lacquer on the metal). Generally the scrap is divided into two groups before charging to the furnace, one without adding degassing and the other degased with (Ar-N2). When temperature exceed 690C° molten aluminum was pour into two molds, after cooling. The two ingots were expose to porosity test, hardness, and microstructure. It was found from recycled cans ingot behave like short freezing range alloys. The main form of shrinkage porosity is localized external sink, appeared at the heat centers or at last region to be solidify. This had been verified clearly by microstructure of many regions of the ingot without adding a degasser. Either defect or decrease in hardness was clearly seen in the ingot without degassing addition. In addition to oxides, a number of additional compounds could be considered inclusions (intermetallic phase particles) in cast structures. Where the main conclusion was to remove gases without using a degassing to ingot decadence on the first gas fire on the cans to remove all paint or lacquer on the metal, but this was not sufficient and properly we need to add degassing to ingots. Finally this was clearly shown from the results of the ingot with adding a degassing had 89 kg/mm2 HV rather than 61 kg/mm2 for ingot without degassing
Thousands of tons of marble waste can be reused every year in Iraq. Few investigations are made to study the effect of marble as a filler on hot mix asphalt concrete.. This big amount of waste has a bad effect on the environment and needs a lot of money and effort for recycling or disposal. Lime stone dust was used as a control filler. The laboratory tests have been conducted in order to evaluate the properties of each type of filler, which consist of the grain size distribution, the specific gravity (Gs), specific surface area (SA), pore volume(PV), mineral composition, pH and chemical composition.To study the effect of SM on the performance of HMA mixture, several tests were made consist of Marshall stiffness, Indirect tensile strength, Moisture susceptibility and Creep tests. Many conclusions were achieved referring the importance of using Sulaimania Marble waste (SM) in the enhancing most of the properties of HMA concrete.
During the last years, several researches have been studying the final disposal of tyres wastes, due to the great volume generated worldwide, as well as the difficulty for discarding the disposal sites which become a serious environmental problem. In spite of this, recycling appears as the best solution for disposing tyres residues, due to its economical and ecological advantages. This research carried out to assess the feasibility of using crumb rubber (the product of shredding used rubber tyres) as a partial sand replacement in foamed concrete, and investigates the effect of it on some properties of foamed concrete such as, density, water absorption, compressive strength, tensile strength, flexural strength and impact resistance. Crumb rubber of tyres ranging from (0.7 to 5mm) in size was used in this research. Three proportioned mixes were designed in this research, have the same cement content, water-cement ratio, and foam content. The first mix represents a typical reference formulation of foamed concrete without crumb rubber (FC). In the others mixes (FCR-1 and FCR-2), respectively, 20 and 30% of volume of sand were replaced by crumb tyres rubber waste. Tests carried out to assess the behaviour of final product. The results obtained were demonstrated decreasing in foamed concrete strength (compressive, tensile, flexural, and impact) with the increasing of crumb tyres rubber content in the mixture and rubberized foamed concrete specimens (FCR-1 and FCR-2) show a cohesive behaviour than the specimens of reference mix (FC), especially in tensile strength. Comparing with the reference mix (FC), at an age of (28 days), the decreasing of compressive strength was (20.85%) for (FCR-1) and it for (FCR-2) was (37.76%).