Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for ramadi

Article
A proposed plan for implementing the public transport policy in the city of Ramadi / Anbar University as a model

S. Thameel, Th. Mahmood, A. Mustafa, A. Mohson

Pages: 90-99

PDF Full Text
Abstract

The development of cities in the infrastructure and urbanization and the increase in the population make people increase in the purchase of the private car, which in turn causes the congestion , pollution , accident and noise especially after 2003, as Iraq's import of cars increased to 5,800,000 cars distributed between the provinces, as 3Anbar province ranked ninth in the development number of cars with 174,000 cars according to the Central Bureau of Statistics of the Ministry of Planning. The university is the largest governmental institution that has the largest traffic volume of vehicles. We have three directions for entering the Anbar university they are east, middle and west directions. Total traffic volume from east, middle and west direction is 2165 vehicles which lead to traffic congestion in Ramadi city and Anbar university. The total traffic volume in private transportation in east, middle and west direction is 727,515 and 923 vehicles respectively. No of students in private transportation in east, middle and west direction is 4617, 3185 and3985 passengers respectively. As results of this research, there are three proposed parks one of them in the Sujaria at east direction, second park in Ramadi center at middle direction and third park in 5km area at west direction. In this paper, we make comparing between private and public transport in terms of fuel costs and time from the origin (the three proposed parks) to destination (Anbar University) assuming that private cars stopped in those three parks by using Park & Ride System and used buses with capacity of 40 passengers to transport students to the university. Depending on no. of passengers in private transportation from the three proposed parks to university we got the No. of buses from east park (Sujaria area), middle park (Ramadi center) and west park (7km area) to university which were 28, 20 and 25 bus respectively because each bus can transport four times.

Article
The Engineering dimensions and its impact on the sustainability on the roads network in Ramadi city

Rana Thabit, Thaer Mahmoud, Hamid Awad

Pages: 157-167

PDF Full Text
Abstract

Transport is one of the most critical areas of urban life and an essential base for developing and developingsocieties. It is a crucial indicator of the progress and development of cities and their great benefits. It saves from themovement of people and goods and the prosperity of the economy-social, economic and environmental issuesglobally and what we are witnessing in recent times. However, despite the tremendous advancement in technology,it continues to face numerous challenges in developed and developing nations, including our own. The absorptionof the irrigated volume and any defect in the gradient causes many problems such as congestion, delays, trafficjams and the accompanying psychological, economic, social and environmental effects, energy consumption,depletion of natural resources and lifestyle. So transportation has become a concern. And it became a topic ofconcern that imposes the need to think about the preparation and development of the transportation system towardssustainability based on meeting transportation needs. In light of the negative impacts of the sustainable planningengineering dimension on the urban road network in Ramadi and for the Iraqi cities, we have thus attempted tostudy the effect of this project, given the critical impact on sustainable development and the approach used bythinking people and scholars in their studies and documents in Agenda 2030. Through evaluating the data from theresearch region, which comprised 27 Ramadi neighbourhoods, and applying them to the statistical analysis software(SPSS), it discovers that the schematic engineering dimension indicator represented by the hierarchy has direct anddecisive connection significance. The local road area index achieved the most substantial linear relationship,followed by the collective, secondary and major roads indicators. They reached a medium relationship to formulatea sustainable development system based on Ramadi and other Iraqi cities. A decision is making about sustainableurban engineering transportation. And take an approach with whatever is good for the state.

Article
Modal Split Model Using Multiple Linear Regression Analysis

Omaima A. Yousif, Adil N. Abed, Hamid A. Awad

Pages: 222-228

PDF Full Text
Abstract

Several modal split models have been created around the world to forecast which mode of transportation will be selected by the trip - maker from among a variety of available modes of transportation. This modeling is essential from a planning standpoint, as transportation systems typically receive significant investment. In this study, the main purpose was to develop a mode choice model using multiple linear regressions for Ramadi city in Iraq. The study area was divided into traffic analysis zones (TAZ) to facilitate data collection. The data was collected through a home interview of the trip makers in their home units through a questionnaire designed for this purpose. The result showed that the most influential factors on the mode choice for the general trips model using multiple linear regressions are car ownership, age, and trip cost. This model gave a good correlation coefficient of 0.829 meaning that the independent variables explain 82.9 of variance in the dependent variable (type of mode), which will help transport planners in developing policies and solutions for future

Article
Evaluation of Parking Areas in Ramadi CBD

Thaer Sh.Mahmmod

Pages: 131-152

PDF Full Text
Abstract

The car parking problem in Ramadi CBD Area is considered the important urban problems that the Ramadi city suffer especially in the CBD area. Traffic problems are the main challenge of the CBD areas which has direct relationship related to the city commercial use. The CBD main streets were chosen as a case study and the parking area on them were surveyed. The study explained that there is a sharp lack in the parking areas especially in the districts no. 4, 6, 7, and 9. The parking in the surveyed area are of on-street type. In this study there is number of conclusions, recommendations and suggestions for the short and long term projects related to this issue to put plans for solving this urban problem in Ra-madi CBD.

Article
Simulation of Storm Sewer Network Using a Storm Water Man-agement Model (SWMM), Ramadi City as a Case Study

Ethar I. Mohammad, Ayad S. Mustafa, Ammar Adham

Pages: 83-89

PDF Full Text
Abstract

Ramadi city is suffering from severe flood problems during rainfall season as in many cities in developed countries. Storm Water Management Model (SWMM) was used to simulate storm sew-er network in the study area and depending on design rainfall intensity of 9.6 mm/hour. The rainfall intensity was proposed to increased by two to three times of the design intensity because of the absence of metrological stations in the study area to record rainfall intensity data of the rain storm. The intensity increasing by three times led to maximizing the flood risk by 43%. The proposed management to overcoming this problem is linking the collateral lines in Al-Andalus and Alhoz suburbs by additional pipes, this method reduces the percentage of flooding to 31%. Moreover, Economic Indicators (EI) were suggested to evaluate the cost of the network develop-ment. The area index ( ) which represents the total cost of the added pipes to the total area of the suburb, and the longitudinal index ( ), which represents the total cost of the added pipes to the length of the main pipe, the magnitudes of these indexes are 178 US dollar/hectare, and 57 US dollar/m respectively.

Article
Using water treatment sludge to Improve Geotechnical Engineering Properties of Soils: A Review

Mohammed Hamid, Khalid Aljanabi, Ayad Mustafa

Pages: 50-65

PDF Full Text
Abstract

Water treatment sludge (WTS) is a byproduct generated during the treatment of wastewater. In recent years, researchers have explored the potential of using WTS as a soil stabilizer to improve the geotechnical properties of soils. In this review, we will examine the current state of knowledge on the use of WTS for this purpose. The organic matter content of WTS is usually high and can range from 30% to 60%. The high organic matter content makes WTS a potential source of nutrients for plants, and it can also enhance soil structure and water retention. Another important consideration is the environmental impact of using WTS. The use of WTS can be an eco-friendly alternative to chemical stabilizers, which can have adverse effects on the environment. However, there are concerns about the potential for heavy metal contamination in WTS. To mitigate this risk, it is recommended to conduct thorough testing of WTS before using it as a soil stabilizer. Finally, the use of WTS as a soil stabilizer has the potential to improve the geotechnical properties of soils. However, it is essential to consider factors such as the type and dosage of WTS, the soil type, and the environmental impact before using it. Further research is also needed to explore the potential of using WTS in different soil types and environmental conditions.

Article
Effect of Polymer SBR on Strength Reduction in Concrete Immersed in Drainage and Ground Water

Ghassan Subhi Jameel, Ahmed Tareq Noaman, Bevian Ismail Al-Hadithi, Abdulkader Ismail Al-Hadithi

Pages: 168-176

PDF Full Text
Abstract

Concrete structures suffer from the impact of many harmful attacking materials that affect theproperties of the main material in them, which is concrete. These structures are also, exposedto the negative impact of many hostile environments such as soils containing harmful salts andharmful acids. A number of precautions should be considered in order to protect the concreteused in such structures. Adding polymer to concrete components as a percentages weight ofcement is one of the methods for producing polymer-modified concrete, which has lowpermeability, better mechanical properties and is more resistant to the negative effects ofharmful environmental factors. The utilization of polymers could help in protecting structuresand enhancing concrete strength. In this study, concrete mixes were prepared with inclusion ofstyrene butadiene rubber (SBR) polymer at four percentages (0%, 5%, 7% and 10% by cementweight). Co-polymers of butidine with styrene (styrene-butadine rubber (SBR)), are a group oflarge-volume synthetic rubbers. High adhesion occurs between the polymer films that formand cement hydrates. This action gives improves the properties of concrete such as flexuraland compressive strength and gives also a higher durability. The investigation was extended toevaluate the compressive strength of the SBR concrete mixes immersed in three types ofwaters: tap, drainage and ground water, at three different ages. The results showed that SBRpolymer enhanced the compressive strength of concrete significantly. A comparison betweenreduction in strength of concretes immersed in these three types of waters was also presented.Moreover, the presence of SBR polymer led to reduced loss in strength of concrete specimensimmersed in drainage and ground water. A proposed model to determine the compressivestrength of concrete specimens immersed in drainage and ground waters was deduced. Thismodel could be a helpful tool for rapid and easy estimation of the strength of concretespecimens immersed in drainage and ground water at different contents of SBR polymer. Theresults showed the highest improve in compressive strength to be associated with 7% SBRmixes at the three tested ages. The increases in this strength at days 7, 28 and 56 with inclusionof 7% SBR polymer were 112.8%, 113.9% and 116%, respectively, compared to OPC mix.

Article
Effect of Grooves Geometric Parameters on Hydraulic Thermal Performance of Circular Pipe Partially Filled with Metallic Foam

Obaid T. Fadhil, Hamdi E. Ahmed, Wisam A. Salih

Pages: 316-325

PDF Full Text
Abstract

The present paper addresses the numerical study of non-Darcy laminar forced convectionflows in a pipe partially filled with grooved metallic foam attached in the inner pipe wall,which is subjected to a constant heat flux. Computations are carried out for nine differentdimensions of grooves with different Reynolds numbers namely; (250 ≤ Re ≤ 2000) andtheir influences on the fluid flow and heat transfer are discussed. The governing and energyequations are solved using the finite volume method (FVM) with temperature-dependentwater properties. The novelty of this work is developing of a new design for the metallicfoam, which has not studied previously yet. It is observed that the two helical grooves withtwo pitches increase the Nu around 5.23% and decrease the pumping power nearly 12%. Itis also showed a reduction in the amount of material required for manufacturing the heatexchanger, which leads to a decline in the weight of the system 8.29%.

Article
The effect of Corroded Longitudinal Steel Bars on Flexural Behavior of Reinforced Concrete Beams

Tasneem Salah, Yousif Mansoor, Mahmoud Mohammed

Pages: 122-132

PDF Full Text
Abstract

This study aims to examine the relationship between the corrosion rate of longitudinal tensile steel bars and the maximum flexural strength of reinforced concrete RC beams. The study's methodology is designed to show the structural behavior of corroded and non-corroded RC beams, such as ultimate load, deflection, stiffness, crack patterns, and failure mode. Three rectangular beams were cast with dimensions (150× 200 ×1200) mm, and all specimens have the same amount of longitudinal and transverse reinforcement and the same concrete strength. The major parameter is the theoretical mass loss level due to corrosion (0, 10, 15) %. Electrochemical technique was used to accelerate the corrosion in the longitudinal tensile bars. All RC beams were tested under four-point monotonic loading. The test results confirm that the cracking load in corroded beams decreased by 25% comparative to the non- corroded beam. The increase of the percent of corrosion experimental mass loss by 8.25 and 14.15 % decreased the ultimate load by about 14 % and 27%, respectively. This reduction coincided with the decrease in deflection values in mid-span for the ultimate load, which decreased by 53.9% and 46.3%. However, the flexural stiffness was reduced by 13.4 and 15.6% for corroded beams with mass loss (8.25 and 14.15), respectively, compared to the control beam (non-corroded RC beam).

Article
Artificial Neural Networks Modeling of Heat Transfer Characteris-tics in a Parabolic Trough Solar Collector using Nano-Fluids

T. A. Salih, S. A. Mutlag, H. K. Dawood

Pages: 245-255

PDF Full Text
Abstract

In the current article, an experimental investigation has been implemented of flow and heat transfer characteristics in a parabolic trough solar collector (PTSC) using both nano-fluids and artificial neural networks modeling. Water was used as a standard working fluid in order to compare with two different types of nano-fluid namely, nano-CuO /H2O and nano-TiO2/ H2O, both with a volume concentration of 0.02. The performance of the PTSC system was eval-uated using three main indicators: outlet water temperature, useful energy and thermal efficiency under the influence of mass flowrate ranging from 30 to 80 Lt/hr. In parallel, an artificial neural network (ANN) has been proposed to predict the thermal efficiency of PTSC depending on the experimental re-sults. An Artificial Neural Network (ANN) model consists of four inputs, one output parameter and two hidden layers, two neural network models (4-2-2-1) and (4-9-9-1) were built. The experimental results show that CuO/ H2O and TiO2/H2O have higher thermal performance than water. Overall, it was veri-fied that the maximum increase in thermal efficiency of TiO2/H2O and CuO/H2O compared to water was 7.12% and 19.2%, respectively. On the oth-er hand, the results of the model 4-9-9-1 of ANN provide a higher reliability and accuracy for predicting the Thermal efficiency than the model 4-2-2-1. The results revealed that the agreement in the thermal efficiency between the ANN analysis and the experimental results about of 91% and RMSE 3.951 for 4-9-9-1 and 86% and RMSE 5.278 for 4-2-21.

Article
Methodologies Employed to Cool Photovoltaic Modules for Enhancing Efficiency: A Review

Wisam Saliha, Ahmed Abbas, Harith Ali

Pages: 49-62

PDF Full Text
Abstract

Photovoltaic cells are one of the renewable energy sources that have been employed to produce electrical energy from solar radiation falling on them, but not all incident radiate will produce electrical energy, part of those radiate cause the panel temperature to rise, reducing its efficiency and its operational life, unless an attempt is made to employ one of the traditional cooling methods or innovating other methods to cooling it to reduce this effect, which it represented in the active and passive cooling method. In fact, it is difficult to compare the active method with the passive method, as each method has its Advantages and disadvantages that may suit one region without another. But in general, there are basic factors through which at least a comparison between the two methods can be made. Relatively the passive method is less expensive, in addition to no need for additional parts such as pumps and controllers, there is no energy consumption because it does not require power. But it is less effective and efficient than the active method, while the active method has the ability to disperse the heat higher than the passive method. However, it necessitates the use of electricity and is frequently costlier than the passive strategy. In this review, the most common active and passive cases were reviewed, and the pros and cons of each case are summarized in discussion due to the difficulty to list them. The review recommends that future studies should focus on active water cooling and heat-sink, both of which are viable cooling strategies.

Article
The Effect of CKD and RAP on the Mechanical Properties of Subgrade Soils

salman saeed, Ahmed Abdulkareem, Duraid Abd

Pages: 98-107

PDF Full Text
Abstract

The construction of pavement layers on subgrade soil with good characteristics decreases the thickness of these layers, which in turn lowers the cost of building and maintaining roadways. However, it is impossible to avoid constructing pavements on unsuitable subgrade due to a number of limitations. Using conventional additives like lime and cement to improve subgrade properties results in additional costs. As a result, utilizing by-products (cement kiln dust and reclaimed asphalt pavement) in this field has benefits for the environment, economy, and technology. Large amounts of cement kiln dust (CKD), a by-product material, are produced in Portland cement factories. On the other hand, large amounts of reclaimed asphalt pavement (RAP) are accumulated as a result of the rehabilitation of old roads. This paper discusses using CKD and RAP to improve the characteristics of poor subgrade layers by conducting a series of Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests on samples of natural soil and soil stabilized with different percentages of CKD and RAP with different curing times to investigate their impacts on soil properties. The curing was carried out by wrapping the stabilized samples with several layers of nylon and then placing them in plastic bags at room temperature. The compaction results illustrated that the addition of CKD increases OMC and decreases MDD, in contrast to RAP, which decreases OMC and increases MDD. The addition of CKD and RAP led to a significant and unexpected increase in the CBR values. The results show that the soaked and unsoaked CBR values improve from 3.4% and 12.1% for natural soil to 220.1% and 211%, respectively, after adding 20% CKD and curing the samples for 28 days. Also, the addition of 25% RAP to soil-20% CKD blend increased the soaked and unsoaked CBR values to 251% and 215%, respectively. All the additions resulted in a significant reduction in swelling.

Article
Numerical Investigation of Hydraulic-Thermal Performance for a Double-Pipe Heat Exchanger Equipped with 45°-Helical Ribs

Ahmed K. Mashan, Waleed M. Abed, Mohammed A. Ahmed

Pages: 193-202

PDF Full Text
Abstract

In this paper, the hydraulic-thermal performance of a double-pipe heat exchanger equipped with 45°-helical ribs is numerically studied. The ribbed double-pipe heat exchanger is modelled using three heights (H = 0, 2.5, 3.75, 5 mm) of 45°-helical ribs. Two numbers (4-ribs and 8-ribs) of 45°-helical ribs are attached on the outer surface of the inner pipe of the counter-flow double-pipe heat exchanger and compared with a smooth double-pipe heat exchanger. Three-Dimensional computational fluid dynamics (CFD) model for a laminar forced annular flow is performed in order to study the characteristics of pressure drop and convective heat transfer. In addition, the influence of rib geometries and hydraulic flow behaviour on the thermal performance is system-atically considered in the evaluations. The annular cold flow is investigated with the range of Reynolds numbers from 100 to 1000, with three heights of ribs at the same width (W = 2 mm) and inclined angles of (θ = 45°).The results illustrate that the average Nusselt number and pressure drop increase with an in-creasing number of ribs, the height of ribs and Reynold number, while the friction factor decreas-es with increasing Reynolds numbers. The percentage of averaged Nusselt number enhancement for three rib heights (H = 2.5, 3.75 and 5 mm) at 4-ribs is (34%, 65% and 71%), respectively, While for 8-ribs the enhancement percentage is (48%, 87% and 133%) as compared with the smooth double-pipe heat exchanger at Re = 100. The best performance evaluation criteria of (PEC) at (8-ribs, and H = 5 mm) is 2.8 at Re = 750. The attached 45-helical ribs in the annulus path can generate kind of secondary flows, which enhance the fluid mixing operation between the hot surface of the annular gap and the cold fluid in the mid of the annulus, which lead to a high-temperature distribution. Increasing the height of 45°-helical ribs lead to an increase in the sur-face area subjecting to convective heat transfer.

Article
Decision Making in Materials Selection: an Integrated Approach with AHP

Sattar A. Mutlag, hamad M. hasan

Pages: 399-407

PDF Full Text
Abstract

Materials selection is a multi-criteria decision-making (MCDM) problems because the large numberof factors affecting on decision making. The best choice of available material is critical to thecompetitiveness and success of the manufacturing organisation. The analytical hierarchy process(AHP) is an important tool to solve MCDM problems. The choosing process of suitable material(such as a refrigerant fluid) for the Air Condition System (ACS) is faced with challenges such aslack of a systematic approach in setting the optimal performance in terms of its impact on theenvironment and operation. Selecting process for the one refrigerant from a range suitable ofsuitable refrigerant is complex process. The study presents a comparative performance analysisof ACS for using four alternative refrigerants R290, R410, R404 and R22. Then, one of these suitablerefrigerant is selected. The comparison is based on three criteria system operation, environmentand maintenance.Novels ACS performance assessment model is proposed based on an analytical hierarchy process(AHP). The model is based on two main criteria of ACS, quantitative criteria, cooling capacity(CC), coefficient of performance (COP), etc.).And qualitative criteria (Ozone Depletion Potential (ODP), Global Warming Potential (GWP) andmaintenance cost (MC)). It is necessary to look for new technique help decision making to selectalternative refrigerants, to fulfill the goals of the international protocols (Montreal and Kyoto)and optimum operation, to satisfy the growing worldwide demand, in addition the increase outdoortemperature in some countries.This study provides a developed methodology for evaluating ACS performance. Moreover, it helpsto select a robust decision. The results obtained from AHP process that the best rank of the suitablerefrigerant was R404 (0.3763) followed by R22 (0.3657) and so on for the other. Therefore,the proposed methodology can help the decision maker to select the best alternative for bothcriteria (qualitative and quantitative) in complex selecting process.

Article
Numerical study of thermal comfort levels in a conference hall

Mhaned A. Mudher, Ahmed A. Najeeb ao

Pages: 170-183

PDF Full Text
Abstract

The present study was concerned with the analysis, simulation of the air flow pat-terns and thermal comfort levels in the University of Anbar at conferences hall (Ibn Al Haitham hall). The study was performed in a hot - dry season. The pur-pose of the present work was to investigate the level of thermal comfort and the influence of the air flow on the flow patterns at the conferences hall. It has been assumed that the total number of occupying audiences in the hall was approxi-mately 100 persons. The present work simulated and analyzed four hypothetical cases, namely: in the first case, the hall was assumed as an empty place, whereas the other three cases were performed by redistribution for the three units of air conditioning, the hall was assumed as a filled place with persons in September 2019. The study was accomplished using simulation techniques, a CFD code (FLUENT 6.2) v.17, which is commercially available. The CFD modelling tech-niques were applied to solve the continuity, momentum and the energy conserva-tion equations in addition to the Turbulence k-є (RNG) model equations for a tur-bulence closure model. Thermal comfort was assessed by finding the values of predicted mean vote (PMV), predicted percentage of dissatisfied (PPD), and ASHRAE standard-55. In conclusion, the second case was the superior in compar-ison to these other cases. It was noted that the PMV value was 0.17, whereas the PPD value was 6.79 at the breathing level.

Article
Numerical Investigation on the Thermal Performance of Double Pipe Heat Exchanger Using Different Shapes of Fins

Asaad K. Ali, Wissam H. Khalil

Pages: 326-348

PDF Full Text
Abstract

In this study, a numerical investigation on the thermo-hydraulic performance of thedouble pipe heat exchanger into heat transfer by different shapes of fins on the outersurface for the inner tube as extended surfaces. The inner and outer diameters of theinner pipe were (16.05 mm), (19.05 mm) respectively, and (34.1 mm), (38.1 mm) for theouter tube. The length of the heat exchanger was (1000 mm). Hot and cold water wereused as the working fluid, where the hot water flows inside of the inner one in counterflow with the cold water which flows in the annulus. The inlet temperature for the hotwater is (75 OC) while it is (30 OC) for the cold. The hot fluid flows at constant ratewhich is (0.1kg/s) while the cold is varied from (0.1 kg/s to 0.2 kg/s).The study wasperform using the known commercial CFD package (ANSYS – FLUNET 15) .Theresults shows that both (rectangular and triangular) fins enhances the heat transfercoefficient compare with the conventional plain tube .The rectangular fins presents anheat transfer enhancement ratio of (61% to 74%). Using of extended surfaces present agood result in saving energy by enhancing the performance of the double pipe heatexchangers used in petroleum industry.

Article
Numerical Investigation on heat transfer enhancement and entropy generation in a triangular ribbed-channel using nanofluid

Mohammad N. Dahham, M. A. Ahmed

Pages: 65-75

PDF Full Text
Abstract

In this paper, turbulent convective heat transfer in a triangular-ribbed chan-nel has been numerically investigated. SiO2-water with nanoparticles volume fraction of 4% and nanoparticles diameters of 30 nm is employed with Reyn-olds number ranging from 2000 to 8000. The governing continuity, momen-tum and energy equations in addition to low Reynolds number k-ε model have been transformed into body-fitted coordinates system and then solved using finite volume method. The effects of Reynolds number and rib heights on Nusselt number, pressure drop, thermal-hydraulic performance factor and entropy generation are presented and discussed. It is observed that the Nusselt number, pressure drop and thermal performance increase with in-creasing of Reynolds number and rib height. In addition, the highest perfor-mance factor can be obtained at Reynolds number of 6500 and rib height of 1.5 mm.

Article
Study of Some Durability Properties of Self-compacting Concrete Containing Waste Polyethylene Terephthalate

Marwah Majid, Mahmoud Mohammed

Pages: 15-30

PDF Full Text
Abstract

This study aims to investigate the durability properties and microstructural changes of self-compacting concrete (SCC) incorporating waste polyethylene terephthalate (PET) as fibers and as fine aggregate replacement. This is after exposed to saline environment (Alkalies, Sulphates, and Chlorides). PET effect into two forms was also evaluated for routine rheological properties of SCC and mechanical strength before and after exposure to sulphate salt. Five proportions of each form of PET incorporation in SCC mixtures were utilized. The volume fractions considered for PET as fibers were (0.25, 0.5, 0.75, 1.0, and 1.25)% by volume, with aspect ratio of 28%, and (2, 4, 6, 8, and 10)% by volume for fine aggregate replacements. Results indicated that the inclusion of PET adversely affected fresh propertis especially high proportions of PET as fine aggregate. Alkali silica reaction (ASR) outcomes illustrated an enhancement in the mix containing PET fibers, while fine-PET mix was slightly enhanced. Magnesium sulphate reduced mass and compressive strength of all mixes in percentages ranging from (0.18-0.90) % for mass loss and from (0.47-55.13) % for compressive strength loss. Ultrasonic pulse velocity (UPV) and dynamic modulus of elasticity (Ed) increased due to the sulphate impact except for M0.5 and M10 which decreased in both tests. Chloride's theoretical and modelled results illustrated higher diffusion coefficients and lower surface chloride content of fiber-PET mixes as compared to fine-PET mixes. The predicted SCC cover depths for fiber-PET mixes were lower than those predicted for fine-PET mixes for 20 and 50 years of service life design.

Article
Evaluation of wastewater effluents and It's Effects on AL-WARAR Canal

Majeed Mattar Ramal

Pages: 239-258

PDF Full Text
Abstract

The research evaluated the wastewater effluents , Two pump stations discharged directly without any treatment in AL-WARAR Canal in Ramadi City ,located in the southern bank of the Canal . These effluents collects the storm water from the residential area , the drainage open channel which bypassing by septic tanks of domestic wastewater , bypassing from septic tanks of domestic wastewater. Laboratory Tests out on (December 2010 to May 2011) for the Canal (upstream) , wastewater effluents, and Canal ( downstream) to determine the quality characteristics and the wastewater effects upon the AL-WARAR Canal . The results show an increase in almost concentrations of characteristics compared to the Iraqi Standards NO. (25 –B1) in (1967) of the conservation of water resources , where the Bio-chemical oxygen demand , chemical oxygen demand and Total Bacterial Count were increased by (11, 9.7 and 535) times respectively. According to the organic load , the wastewater effluents classified as low strength . This study shows that the value of the reaction constant rate (k1) and Reaeration constant rate (k2)were about (0.187/day) and (0.556 /day ) respectively . Two stations downstream were located to determine the wastewater effects upon the Canal , Dissolved Oxygen was measured and calculated by using (STREETER –PHELPS) equations , then Sag curve of AL-WARAR Canal was determined .In spite of that the wastewater effluent does not comply with the Iraqi Standards discharged into water resources NO. (25 –B1) in (1967) , AL-WARAR Canal still comply with the Iraqi standards (NO. 25-A1) in (1967) of the conservation of water resources by the effect of self-purifications.

Article
Investigating the Service life of asphalt pavement in a sample of Ramadi district roads

Kalid awaad

Pages: 169-175

PDF Full Text
Abstract

A sample of 50 randomly selected rural and urban roads of Ramadi district were observed for asphalt pavement Distresses. Three main types of Distresses were considered; rutting, cracks and pavement separation. In addition, different other Distresses types that were observed were grouped in one category named "Other". For each road, information about the age of the pavement was recorded. Kaplan-Meier method was carried out in order to understand the Remain time before pavement deterioration as well as to compare pavement service life with respect to the type of Distress. Results of this research revealed significant differences between pavement service life corresponding to the type of Distress. Pavement service life appeared to last less than 20 months when all the mentioned types of Distresses are occurred on the road

Article
Properties of Sustainable Self- compacting Concrete Containing Treated and Modified Waste Plastic Fibers

Asmaa Hussien, Mahmoud Mohammed

Pages: 23-34

PDF Full Text
Abstract

This study aims to improve different properties of sustainable self-compacting concrete SCC containing treated and modified polyethylene terephthalate PET fibers. For this purpose, gamma ray surface treatment and geometric modification were utilized for the used PET fibers. Concrete fresh properties include slump flow, T500mm, L-box and sieve segregation while mechanical properties include compressive, split tensile strength, flexural strength, static modulus of elasticity and impact strength. Further, physical properties and related durability properties comprise dry density, ultrasonic pulse velocity, porosity and water absorption. The results obtained demonstrated that the treatment and the modification used for the PET fibers slightly reduced the fresh properties of produced sustainable SCC (slump flow, T500 mm, L-Box and sieve segregation). However, they were within the limits of the SCC specification as reported in EFNERC guidelines. Further, concrete hardened properties in terms of compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, impact strength, ultrasonic pulse velocity, decrease in the dry density, decrease in porosity and water absorption increased significantly.

Article
Numerical Study on Hydrothermal Performance Factor Using Jet impingement and Nanofluid

Ibrahim K. Alabdaly a, M. A. Ahmed

Pages: 308-315

PDF Full Text
Abstract

In this study, thermal-hydraulic performance of a confined slot jet impingement with Al2O3-water nanofluid has been numerically investigated over Reynolds number ranges of 100-1000. Two triangular ribs are mounted at a heated target wall; one rib located on the right side of the stagnation point and another one located on left side of the stagnation point. The governing momentum, continuity and energy equations in the body-fitted coordinates terms are solved using the finite volume method and determined iteratively based on SIMPLE algorithm. In this study, effects of Reynolds number, rib height and rib location on the thermal and flow characteristics have been displayed and discussed. Numerical results show an increase in the average Nusselt number and pressure drop when Reynolds number and rib height increases. In addition, the pressure drop and average Nusselt number increases with decrease the space between the stagnation point and rib. The maximum enhancement of the average Nusselt number is up to 39 % at Reynolds number of 1000, the rib height of 0.3, rib location of 2 and nanoparticles volume fraction of 4%. The best thermal-hydraulic performance of the impinging jet can be obtained when the rib height of 0.2 and rib location of 2 from the stagnation point with 4% nanoparticles volume fraction.

Article
Evaluation of Housing of Low-in come Projectsin Ramadi City

Thaer sh. Mahmood

Pages: 125-140

PDF Full Text
Abstract

The purposes of planning for housing and solve the housing problem of the most important topics in studies of housing also it is one of the topics broad and complex, and that the planned housing in accordance with the cost and social benefit is the solution to reduce the heights fantasy of the costs of housing. Also its negative effects on the process of housing where most of Iraq's society of the middle class is needed to adequate housing with income, especially if we consider that there is a deficit of housing dramatically in Iraq. Which is estimated at more than three million housing units and offset by a significant decrease in the rates of housing construction, also which are led to the worsening problem of housing in the country, especially those with low income, so it requires the parties responsible speed up the adoption of the strategy to solve the problem of housing in the country adopt the principle of the establishment of residential low-cost through the adoption of residential buildings, multistorey (3-4) stories as characterized by the buildings of the densities of housing appropriate of effective use with economic land and reduce the costs of housing to meet the large deficit and demand residentialdemand. In order to reach the desired goal has been studied and the reality of the housing in Ramadi in the, Ta'meem, 5 km and the 7 km areas and limited the problems of constraints related with planning housing also its components as well as access to some of the experiences of countries in planning, housing and solving the housing crisis within finding the alternatives to some traditional building materials with finding teams cost whenusingthesealternatives. Also supports research field study of three residential compounds, which aims at evaluating the appropriateness of such style housing and how to achieve social benefits and meet the standards of planning and design proposed in the scheme of public housing in Iraq which have been using the method (analysis of cost - benefit) for the trade-off to choose the best alternative of residential complexes three (and low cost, Ta'meem, the 7 km), which achieves less expensive and better utility.

Article
Develop QFD and AHP Models for Liquid Gas Valve for Product Developmen

Saad R. Serheed, Kadhum A. Abed

Pages: 25-32

PDF Full Text
Abstract

This new methodology utilizes Quality Function Deployment (QFD) with Analytic Hierarchical Process (AHP) together for improving product planning stage, hence, the product development, because this stage precedes the manufacturing stage and is regarded as an important stage in the product development. The proposed methodology consists of two models; namely: (1) Curent QFD Model. (2) Current AHP Model. It was applied practically to demonstrate the models' applicability and suitability, and develop liquid Gas Cylinder Valve produced at Al-Ikhaa General Company (IGC) for Mechanical Industries. "Thus it was possible to find out the critical and important specifications for improving product planning which should be considered in product development". These specifications have high ranking and Scaled Value Technical Ratings (SVTR) of over (50%). SVTR have values as follows: (1) (1.0000) for Pad (H1), then (2) (0.9270) for piston (H4), (3) (0.9195) for gasket (H12), (4) (0.8236) for safety valve (H6), (5) (0.8156) for sealing 1 (H5), (6) (0.6935) for sealing 2 (H9), (7) (0.5441) for installing the regulator with valve (H10) and (8) (0.5220) for spring2 (H7). When applying AHP method, various results were obtained. Based on the final score of Al-Ikhaa Company, where the highest defects value was (45%) was reported in the production processes. Also, values of maintenance dismantling 23%, Product assemblage 12% and maintenance assemblage 9% of the Product values.

Article
Effect of Pulse Repetition Rate on Micro Hardness on the Surface and Cross Section of Gray Cast Iron by using ND-YAG Laser

A. Shahada, B. Abbas S. Alwanb, Kadhemm. A. Abedc

Pages: 67-71

PDF Full Text
Abstract

This work, studied the effect of pulse repetition rate on the micro hardness for each of the surface and cross section by using pulsed ND-YAG laser with laser parameters (Energy = 4.12J).The distance off between the output nozzle and the minimum spot size on the surface of sample was (12mm),and pulse duration was (1.8ms).The results showed that the micro hardness increased after laser treatment ,but the micro hardness decreased with increase pulse repetition rate for both the surface and cross section of the pulses. The micro hardness increased as moving away from the molten zone towards the end of the pulses at the heat affected zone due to increase in cooling rate.

Article
Rutting Performance of Asphalt Layers Mixtures with Inclusion RAP Materials

Abdalsattar M. Abdalhameed, Duraid M. Abd

Pages: 203-210

PDF Full Text
Abstract

sphalt is the most recycled materials around the world and the amount of RAP materials can be significantly increased with the application of good RAP management applications. In Iraq, the real inclusion of RAP materials in asphalt mixtures has not been applied yet in the field. It is therefore that there is a need to characterize the effect of inclusion RAP materials in asphalt mixtures with particular reference to permeant deformation/rutting resistance. The aim of this study is to evaluate the best layer of pavement structure; base, binder, and surface layers for inclusion (RAP) materials. In addition, highlight the best percentage that can be added from RAP to achieve positive results and better than that associated reference mixture in terms of rutting resistance. RAP materials collected from different sources Karbala and Fallujah, were adopted in this study at percentages of 20%, 30%, and 40% by weight of the asphalt mixture. Two scenarios of incorporating RAP materials have been adopted. The first is considered that RAP as a black rock in which the effect of aged binder surrounding the aggregate of RAP is neglected while, the letter is not considered RAP as black rock and the influence of aged binder in RAP materials has been taken into consideration. Dora bitumen has adopted in the current study which is used in common in Iraq. It has been highlighted the best layer in which RAP can be incorporated is the base layer, with a percentage up to 40% that RAP without considering RAP black rocks regardless the sources of RAP.

Article
Static analysis of two-directional functionally graded cylindrical panels under the effect of symmetric loads using finite element method (FEM)

Qutaibah M. Mohammed, Hamad M. Hasan

Pages: 408-424

PDF Full Text
Abstract

This paper offers the linear analysis of the static behavior of two directional functionally graded(2D-FG) cylindrical panels under the effect of internal symmetric loads. The mechanicalproperties of the cylindrical panel are given to be changed simultaneously through the thicknessand longitudinal directions as a function to the volume fraction of the constituents by a simplepower-law distribution. Based on Sander’s first order shear deformation shell theory (FSDT), theequations of motion for (2D-FG) panels are derived using the principle of minimum totalpotential energy (MPE). The finite element method (FEM) as an effective numerical tool isutilized to solve the equations of motion. The model has been compared with those available inthe literature and it observed good correspondence. The influences of the material variationalong the thickness and longitudinal directions, geometrical parameters, boundary conditionsand load parameters on the panel deformation are studied in detail.

Article
Evaluation and Improvement of Traffic Operation for Al-Zeoat Intersection in Al-Ramadi City

Wasan M. Mahmood, Hameed A. Mohammed, Hamid A. Awad

Pages: 46-57

PDF Full Text
Abstract

The increase in traffic volumes at intersections is one of the important problems that makes difficulties in the traffic movement then leads to traffic congestion in these facilities.The objective of the present study is improvement the traffic operation of the selected intersection (Al-Zeoat intersection) in Al-Ramadi city by analysis and evaluation this intersection and using accepted solutions to improve the traffic operation of Al-Zeoat intersection under local exist conditions and present a best proposal to enhance the performance at the intersection.To achieve these objectives, the traffic volumes data collection and geometric layout for Al-Zeoat intersection that required for the traffic and geometrical analysis were gathered manually, while SIDRA traffic program is used for the requirements of traffic analysis process.

Article
Optimization of Casting Conditions for Semi-Solid A356 Aluminum Alloy

Osama Ibrahim Abd, Nawal Ezzat Abdul-Latiff, Kadhum Ahmed Abed

Pages: 44-53

PDF Full Text
Abstract

RSM and DOEs approach were used to optimize parameters for hypoeutectic A356 Alloy. Statistical analysis of variance (ANOVA) was adopted to identify the effects of process parameters on the performance characteristics in the inclined plate casting process of semisolid A356 alloy which are developed using the Response surface methodology (RSM) to explain the influences of two processing parameters (tilting angle and cooling length) on the performance characteristics of the Mean Particle Size (MPS) of α-Al solid phase and to obtain optimal level of the process parameters. The residuals for the particle size were found to be of significant effect on the response and the predicted regression model has extracted all available information from the experimental data. By applying regression analysis, a mathematical predictive model of the particle size was developed as a function of the inclined plate casting process parameters. In this study, the DOEs results indicated that the optimum setting was approx. (44) degree tilt angle and (42) cm cooling length with particle size (30.5) μm

Article
Dam and Reservoir System Management based on Genetic Algorithms

Mohammed Ahmed

Pages: 46-52

PDF Full Text
Abstract

Indeed, there are many hydrology variables influence on the operating of dam and reservoir system. Thus, modelling of dam operation is a complicated issue due to the nonlinearity of such hydrological parameters. Hence, the identification of a modern model with a high capacity to cope with the operation of the dam is extremely important. The current research introduced good an optimization algorithm, namely Genetic Algorithm (GA) to find best operation rules. The main aim of the suggested algorithm is to minimize the difference between irrigation demand and water release value. The developed algorithm was applied to find operation rules for Timah Tasoh Dam, Malaysia. This research used significant evaluation indexes to examine the algorithms' performance. The results indicated that the GA method achieved low Vulnerability, high Resilience and Reliability. It has been demonstrated that the GA method will be a promising tool in dealing with the problem of dam operation.

Article
Preparing a PLC Program for the Kiln Entrance of Ceramic

Sattar A. Mutlk

Pages: 82-94

PDF Full Text
Abstract

In the Present work, the application of the PLC in the production line was studies from the point view of industrial engineering and write program by ladder diagram (LAD) method. This study was done in ceramic factory of the state company of class and ceramic in Ramadi. It was exactly on the Kiln entrance of ceramic tiles, for reused PLC system where the tiles pieces inter the Kiln in compiled arranged rows in order to guarantees the heat distribution

Article
The effect of using Coagulants and Coagulants Aid (Porcelanite and Silica Jel) in improving water efficiency treatment .

Arkan Dhari Jalal

Pages: 259-279

PDF Full Text
Abstract

Many studies were achieved in order to improve water efficiency treatment and to remove high turbidity by using Coagulants like Alum with Coagulants aid like polymers. Many researches explain the effect of these polymers on the removal of high water turbidity over the past years attempting to improve the coagulation and flocculation processes. Several experiments were performed to investigate the effect of using other types of coagulants aid on the percentage removal of turbidity and to find the optimum dosage of coagulant (alum) and coagulant aid. The coagulants used in this study were alum, Porcelanite and Silica Gel which are used in general company of ceramic and glass factory in Ramadi City as liquid state .The initial turbidity at 450 NTU was used with floc growth and floc formation was studied for Kaolinite 10 µm particles size. The results were obtained and plotted to show the effect of using different dosages of the mentioned coagulants on the residual and percentage removal of turbidity. Also, other parameters like TDS, Ec, pH and salt were calculated. The results indicated that the efficient coagulant type with dose of 30 mg/l is 4.56 NTU residual turbidity and removal percentage of 98.98% by using alum with silica, with the percentage of alum is 60% and 40% of Silica and pH value 7.66.

Article
Improving Productivity Employ Simulation Model: A Case Study of a Steel Pipe Manufacturing Company

Arz Qwam Alden

Pages: 35-45

PDF Full Text
Abstract

Productivity improvement in the manufacturing industry of piping is a key challenge facing manufacturers in today's competitive markets. Improving productivity in the pipe manufacturing companies by implementing manufacturing principles that utilize simulation modeling was the purpose of this study. To improve productivity, an approach that focuses on the workstations and workforces process was suggested. The suggested approach’s goal was to increase productivity by providing customer prerequisites and leaving some products for other customers in the store. Based on the data has been gathered from the company of steel pipes, Bansal Ispat Tubes Private Limited in India, a simulation model was utilized to enhance its performance of operational. The investigation methodology consists of a simulation model, acceptable distribution, and data investigation. By simulating individual workstations and evaluating all relevant processes according to the data collected, the simulation model was built. Actual employment data were gathered from the line of manufacturing and supervisory workers, with observations carried out throughout the process of manufacturing. The used method involves videotaping of the process and interviewing workers using a video-camera. The superior continuous distributions were picked to fulfill a convenient statistical model. The results could be helps to ameliorate the manufacturing industry productivity. Furthermore, the outcomes could assist to solve the problems of scheduling in pipe manufacturing "simulating and modeling" which reveals active ways in enhancing pipe manufacturing productivity. Consequently, the findings might support well competition among companies.

Article
Performance Measure of Turbo Code Using LLR Histogram

Mohammed AlMahamdy

Pages: 13-20

PDF Full Text
Abstract

Turbo codes have been deployed in many cutting-edge technologies because they can achieve very high coding gains. Turbo decoders deploy at least two Soft-Input-Soft-Out (SISO) decoders, which operate iteratively to incorporate their results to conclude the output. The soft outputs from the used constituent SISO decoders develop gradually along the iterations. This development is studied and analyzed in this work to understand the dynamics leading to the results. Histograms statistically group and visualize the soft results for further analysis and study. A method is proposed to evaluate the decoding performance based on the density of the values of the soft outputs within the histogram. Results show that the performance is inversely related to the ratio of the values of the soft outputs within the near-zero bins within the histogram. The proposed method can be deployed at the decoder to provide an early indication of the reception and whether it has the potential to be correctly decoded or not. This early decision can save the decoding resources. 

Article
Evaluating the Effect of Supplementary Irrigation on Improvement of Economic Water Productivity for Winter Wheat

Ali Hamid Abdullah, Sabah Anwer Almasraf, Zainab Abdulelah Al Sudani

Pages: 60-65

PDF Full Text
Abstract

Utilizing of subsurface water retention technology is a modern technique to retain and save the application water for sustainability of agricultural production through scheduling and management the irrigation processes. The goal of this paper is to evaluate the effect of the supplementary irrigation and rainfed water on improvement of economic water productivity for winter wheat. The experiment was conducted in open field, within Joeybeh Township, located in east of the Ramadi City, in Anbar Province, for the growing season 2018-2019. Two plots were used for comparison process, the first plot where membrane trough below the root depth was installed and supplementary irrigation system was conducted beside the rainfed water and according to scheduling the irrigation process as checkbook method. While in second plot, the membrane trough was installed and only rainfed water was depend on. Cultivated date of winter wheat was December, 20th, 2018, and the harvest date was May, 10th, 2019. The obtained result was showed that the crop yield and economic water productivity from the first plot and the second plot were equaled to 0.52 kg/m2 and 0.35 kg/m2, and 930 ID/m3 and 800 ID/m3, respectively. The increasing value of crop yield and economic water productivity in the first plot was more than that in the second plot by 49 % and 16 %, respectively. The benefits of applying supplementary irrigation system with installing the new techniques of retaining the applied water were sufficient in improvement the crop yield and accordingly improved value of the economic water productivity.

Article
Study of the Performance Thermal Forced Unglazed Solar Air Collector

Amir Jameel Shareef

Pages: 311-332

PDF Full Text
Abstract

An experimental study is achieved to study the thermal performance of forced unglazed solar air collector supplied with perforated absorber flat plate. The study is carried under Iraqi circumferences in Al-Ramadi city .The collector is inclined (90o) on horizontal for the simplicity of setting such type of collector on the wall building and minimize its weight. The measurement is recorded on Winter season for two sunny days and two cloudy days in (January 2012). The results show that its possible to use this type of collectors for heating in Winter time because the maximum out air temperature reach to (34oC) when ambient air temperature at (17oC) in sunny days. A good agreement is shown with the published studies Finally its obtained a good effectiveness for perforated flat plate absorber with high system efficiency.

Article
Evaluation of transportation network in AL- Fallujah city

Khalid Hardan Mhana

Pages: 146-156

PDF Full Text
Abstract

The city of Fallujah suffers from bad design in their network and it still dominated by the same pattern of the road and street network system that was produced by the previous stages of the development of the city, which is awaiting the necessary and appropriate solutions, which calls for planning to modernize the road network and streets in it that can accommodate the reality of the city’s condition and the proposed expansions for its subsequent urban growth. The transportation network in Fallujah city was chosen as a case study, the network was divided into roads and intersections, the evaluation included two main roads and eleven sectoral roads, eleven arterial roads, and twenty-five intersections. The network was evaluated in three stages, the first stage was traffic flow and service level, the second stage was evaluating the network in terms of road and intersections marking, while the third stage concerned with evaluating the network in terms of sustainability. The HCS 2010 program was applied to evaluate the first stage, while the second and third stages were evaluated based on the field survey. The results of the first stage showed that most parts of the network in the northern zone suffer from traffic problems and have a low level of service, while most parts of the network in the southern zone have a high service level and enjoy high traffic flow. Most parts of the network were suffered from bad marking, which causes many problems for the users of this network. Related to sustainability, we note a lack of interest on the part of designers or decision-makers. It was concluded that traffic solutions should be economically feasible for some parts of the network, which would lead to improving the network’s performance at the level of the three stages.

Article
Predicting the Daily Evaporation in Ramadi City by Using Artificial Neural Network

Atheer Saleem Almawla

Pages: 134-139

PDF Full Text
Abstract

In this paper the artificial neural network used to predict dilly evaporation. The model was trained in MATLAB with five inputs. The inputs are Min. Temperature, Max. Temperature, average temperature, wind speed and humidity. The data collected from Alramadi meteorological station for one year. The transfer function models are sigmoid and tangent sigmoid in hidden and output layer, it is the most commonly used nonlinear activation function. The best numbers of neurons used in this paper was three nodes. The results concludes, that the artificial neural network is a good technique for predicting daily evaporation, the empirical equation can be used to compute daily evaporation (Eq.6) with regression more than 96% for all (training, validation and testing) as well as, in this model that the Max. Temperature is a most influence factor in evaporation with importance ratio equal to (30%) then humidity (26%).

Article
The Ɵptimum Decisions in Improving Sustainable Road Network Infrastructure by Using ,GIS , Graph Theory and L-matrix

M. S. al-Shuqairy, Noor A. Rajab

Pages: 43-52

PDF Full Text
Abstract

Road network infrastructure is the key indicator of sustainable spatial development, as it affects the economy, environment, and society activities. These can be optimized through minimizing the time the vehicles take on the road, which in turn requires high connectivity and then high accessibility between the nodes of the road network. However, it is necessary to put a development strategy that helps the decision makers to produce relative high accessibility over the development time. In this paper, the vulnerabilities regarding the connectivity and spatial accessibility were pinpointed and analyzed, optimum priorities in sequent new linkages adding are made for developing a sustainable infrastructure with faster enhancement for the spatial accessibility. The results have become a tough guidance for decision makers, and can be adopted as a first step for legislating a strategy for sustainable transportation system

Article
Evaluation and treatment of waste water effect on groundwater quality (the University of Anbar area as a case study)

Mohammed Freeh Sahab

Pages: 139-145

PDF Full Text
Abstract

This research focuses on studying the impact of different sources of wastewater, such as do-mestic, industrial, agricultural, etc. upon groundwater. The swamp of contaminated water collec-tion within the Al-Anbar University area was taken as a case study for this research. This swamp has a pond that works as a collection basin for different sources of wastewater mainly domestic waste coming from leakage of contaminated water from the septic-tank of the residential com-plex of students. This contaminated water will leak over time within the folds of soil due to per-meability and the effect of land attraction and reach the levels of groundwater.The presence of polluted water near groundwater is an environmental hazard and harmful because this leakage water has different diseases and germs, which could pose a danger to human health. Different samples of these sources were taken from different places at different times and some physical, chemical, and biological tests were then conducted. Wastewaters characterization was also investigated in this study to make an assessment for water quality and find out a proper treatment method. Data obtained from this study show different levels of pollutants, which could highly affect groundwater quality. A proper and advanced treatment method was also proposed in this study, depending on the wastewater characterization results. The purpose of this research is wastewater treatment using the physical method with coagulation and Flocculation processes with local coagulants to reduce pollutants impact on groundwater.The results showed the addi-tion of alum at 35 mg/l increased the removal efficiency by 80.7% at the settling time of 60 min, and the addition of 35 mg/l of the lime increased the removal efficiency by 63.9% at the same settling time.It has been proven that the use of alum is more effective than lime for sedimenta-tion suspended matter. The optimum dosage and settling time are 20 mg/l and 60 min respec-tively.

Article
A Review on Factors Effecting The adsorption of Heavy Metal Using Different Biosorbents

Suha Salih

Pages: 25-40

PDF Full Text
Abstract

Agricultural, industrial, and household debris can be employed as biosorbents to extract heavy metals from water that has been contaminated. Kitchen waste includes, among other things, peels from promotional gates, lemons, avocados, apples, kiwis, watermelons, and onions. Moreover, coffee and tea grounds are considered to be household refuse. This review illustrates the scholarly investigations that explored the potential of various waste materials as adsorbents for wastewater treatment. An extensive array of experiments was conducted to determine the variables that influence the capacity of these materials to adsorb heavy metals. To undertake the experiments above, different concentrations of biosorbent were introduced into the effluent at various contact times and pH levels. The researchers investigated the effects of varying these parameters and found that the biosorbent's ability to adsorb heavy metals is directly proportional to these factors. The results and conclusion indicated that the impact of biosorbent concentration and contact duration on the pH of contaminated water was assessed. To encourage the incorporation of industrial, agricultural, and household refuse into water treatment processes rather than permitting it to accumulate as an environmental hazard.

Article
Fuzzy Reliability-Vulnerability for Evaluation of Water Supply System Performance

S. A. Mutlag, A. H. Kassam

Pages: 72-82

PDF Full Text
Abstract

The reliability of water supply system is a critical factor in the development and the ongoing capability to succeed in life and people's health. Determining of its, with high certainty, for performance of water supply system is developed to ensure the sustainability of system. Reliability (Re) plays a great role in evaluation of system sustainability. The probability approaches have been used to evaluate the reliability problems of systems. The probability approach is failed to address the problems of reliability evaluation that comes by subjectivity, human inputs and lack of history data. This research proposed two models; I) traditional model: fuzzy reliability measure suggested by Duckstein and Shresthaand then developed by El-Baroudy; and II) developed model: fuzzy reliability-vulnerability model. The two models implemented and evaluation of water supply system by using two hypothetical systems (G and H). System (G) consists of a single pump and System (H) consists of a two parallel pumps. Triangular and trapezoidal membership functions (MFs) are used to investigate of the reliability measure to the form of the membership function. The results agree with expectations that the reliability of parallel component system {ReH (0.53)} is higher than the reliability of single component system {ReG (0.47)}. Moreover, the result by using fuzzy set reduces the effect of subjectively in process of decision-making (DM). The fuzzy reliability vulnerability is able to handle different fuzzy representations and different operation environment of system

Article
Studying the Factors effect on Separation of Two Solid Equivalent Particle According to Density and Determination the best Separation Point

Suha Salih

Pages: 22-35

PDF Full Text
Abstract

Density separation has many applications in metallurgy, medicine, clinical chemistry, microbiology, and agriculture. This study investigates the factors' effects on density separation in order to benefit from this technique. The separation quality depends on the velocity of particles because as the velocity of particles increases, the mean separation needs less time so it gives better separation, so the parameter effect on the value of the velocity is studied. These parameters were volume fractions, the diameter of the sphere, the density of the sphere, and the viscosity of the fluid. Each parameter was studied by calculating the velocity of particles using Stokes' law. The velocity of particles is directly proportional to some properties of particles. These properties are the diameter and density of a particle because as these properties increase, the mass of particles increases, which leads to increased kinetic energy, which increases turbulence. Turblance's velocity is increasing. The volume fraction of spheres is another property of particles' effects on density separation. This parameter is inversely proportional to velocity because a collision between particles increases, which decreases turbulence. Fluid properties also have an impact on density separation. This property is viscosity. Its effect deteriorates the efficiency of separation because viscosity is the resistance of the fluid to flow that serves to displace the particle, which leads to a reduction in the velocity of the particle. The maximum separation happens when the sink and float particles separate at the same time. That happens when the sink and float particles have the same velocity in the opposite direction. That means when the sum of velocities equals zero. In this research, the maximum separation was derived when the sum of velocities equaled zero.

Article
Experimental Study of Parabolic Trough Receiver with Perforated Twisted Tape Insert Using Fuzzy Model Analysis

S. M. Naif, S. A. Mutlag, W. H. Khalil, H. K. Dawooda

Pages: 130-138

PDF Full Text
Abstract

A solar water heating system has been fabricated and tested to analyze the thermal performance of Parabolic Trough Solar Collector (PTSC) using twisted tape insert inside absorber tube with twisted ratio about TR=y/w=1.33. The performance of PTSC system was evaluated by using three main important indicators: water outlet temperature (Tout), useful energy and thermal efficiency (ηth) under the effect of mass flow rate (ṁ) ranges between 0.02 and 0.04 Kg/s with the corresponding of Reynolds number (Re) range (2000 to 4000). In a parallel, a fuzzy-logic model was proposed to predict the thermal efficiency (ηth) and Nusselt number (Nu) of PTSC depending on the experimental results. The fuzzy model consists of five input and two output parameters. The input parameters include: solar intensity (I), receiver temperature (Tr), water inlet temperature (Tin), water outlet temperature (Tout) and water mass flow ( ) while, the output include the thermal efficiency (ηth) and Nu. The final results indicate that, owing to the mixture of the swirling flow of the perforated twisted-tape insert, the perforated twist tape insert enhances the heat transfer characteristics and the thermal efficiency of the PTSC system. More specifically, the use of perforate twist tape inserts enhanced the thermal efficiency by 4% to 4.5% higher than smooth absorber tube. Also, the predicted values were found to be in close agreement with the experimental counterparts with accuracy of ~92 %. So, the suggested Fuzzy model system would have high validity and precision in forecasting the success of a PTSC system compared to that of the traditional model. Pace, versatility, and the use of expert knowledge for estimation relative to those of the traditional model are the advantages of this approach

Article
Prediction Load-Settlement of Bored PileS Using Artificial Neural Network

Omer Jamel, Khalid Aljanabi

Pages: 17-24

PDF Full Text
Abstract

Pile foundations are typically employed when top-soil layers are unstable and incapable of bearing super-structural pressures. Accurately modeling pile behavior is crucial for ensuring optimal structural and serviceability performance. However, traditional methods such as pregnancy testing, while highly accurate, are expensive and time-consuming. Consequently, various approaches have been developed to predict load settlement behavior, including using artificial neural networks (ANNs). ANNs offer the advantage of accurately replicating substrate behavior's nonlinear and intricate relationship without requiring prior formulation.This research aims to employ artificial neural network (ANN) modeling techniques to simulate the load-settlement relationship of drilled piles. The primary aims of this study are threefold: firstly, to assess the effectiveness of the generated ANN model by comparing its results with experimental pile load test data; secondly, to establish a validation method for ANN models; and thirdly, to conduct a sensitivity analysis to identify the significant input factors that influence the model outputs. In addition, this study undertakes a comprehensive review of prior research on using artificial neural networks for predicting pile behavior. Evaluating efficiency measurement indicators demonstrates exceptional performance, particularly concerning the agreement between the predicted and measured pile settlement. The correlation coefficient (R) and coefficient of determination (R^2) indicate a strong correlation between the predicted and measured values, with values of 0.965 and 0.938, respectively. The root mean squared error (RMSE) is 0.051, indicating a small deviation between the predicted and actual values. The mean percentage error (MPE) is 11%, and the mean absolute percentage error (MAPE) is 21.83%.

Article
Experimental and simulation investigation of porous Functionally Graded beam under bending loading

Muthanna Ismaeel Fayyadh, Arz Qwam Alden

Pages: 98-107

PDF Full Text
Abstract

In recent decades, functionally graded porous structures have been utilized due to their light weight and excellent energy absorption. They have various applications in the aerospace, biomedical, and engineering fields. Therefore, the balance between material strength and light weight is the goal of the researchers to decrease the cost. Samples of PLA material were designed and manufactured using a 3D printer according to international standard specifications to study the effect of porosity gradient through thickness. An experimental three-point bending test was performed, and then simulations were performed using ANSYS 2022 R1 software on samples with functionally gradient different porosity layers to verify the experimental results. The results from the experiment and the numerical values were in excellent alignment with an error rate of no more than 13%. The maximum bending load and maximum deflection of the beam were specified experimentally and compared with the numerical solution. The maximum bending and the maximum deflection When the porosity layer in the middle of the beam, matched the ideal maximum bending load (190,194) N experimentally and numerically, respectively. The maximum deflection (5.9,6.4) mm experimentally and numerically, respectively was obtained in samples with varying porous layers.

1 - 46 of 46 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.