Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for productivity

Article
Improving Productivity Employ Simulation Model: A Case Study of a Steel Pipe Manufacturing Company

Arz Qwam Alden

Pages: 35-45

PDF Full Text
Abstract

Productivity improvement in the manufacturing industry of piping is a key challenge facing manufacturers in today's competitive markets. Improving productivity in the pipe manufacturing companies by implementing manufacturing principles that utilize simulation modeling was the purpose of this study. To improve productivity, an approach that focuses on the workstations and workforces process was suggested. The suggested approach’s goal was to increase productivity by providing customer prerequisites and leaving some products for other customers in the store. Based on the data has been gathered from the company of steel pipes, Bansal Ispat Tubes Private Limited in India, a simulation model was utilized to enhance its performance of operational. The investigation methodology consists of a simulation model, acceptable distribution, and data investigation. By simulating individual workstations and evaluating all relevant processes according to the data collected, the simulation model was built. Actual employment data were gathered from the line of manufacturing and supervisory workers, with observations carried out throughout the process of manufacturing. The used method involves videotaping of the process and interviewing workers using a video-camera. The superior continuous distributions were picked to fulfill a convenient statistical model. The results could be helps to ameliorate the manufacturing industry productivity. Furthermore, the outcomes could assist to solve the problems of scheduling in pipe manufacturing "simulating and modeling" which reveals active ways in enhancing pipe manufacturing productivity. Consequently, the findings might support well competition among companies.

Article
Evaluating the Effect of Supplementary Irrigation on Improvement of Economic Water Productivity for Winter Wheat

Ali Hamid Abdullah, Sabah Anwer Almasraf, Zainab Abdulelah Al Sudani

Pages: 60-65

PDF Full Text
Abstract

Utilizing of subsurface water retention technology is a modern technique to retain and save the application water for sustainability of agricultural production through scheduling and management the irrigation processes. The goal of this paper is to evaluate the effect of the supplementary irrigation and rainfed water on improvement of economic water productivity for winter wheat. The experiment was conducted in open field, within Joeybeh Township, located in east of the Ramadi City, in Anbar Province, for the growing season 2018-2019. Two plots were used for comparison process, the first plot where membrane trough below the root depth was installed and supplementary irrigation system was conducted beside the rainfed water and according to scheduling the irrigation process as checkbook method. While in second plot, the membrane trough was installed and only rainfed water was depend on. Cultivated date of winter wheat was December, 20th, 2018, and the harvest date was May, 10th, 2019. The obtained result was showed that the crop yield and economic water productivity from the first plot and the second plot were equaled to 0.52 kg/m2 and 0.35 kg/m2, and 930 ID/m3 and 800 ID/m3, respectively. The increasing value of crop yield and economic water productivity in the first plot was more than that in the second plot by 49 % and 16 %, respectively. The benefits of applying supplementary irrigation system with installing the new techniques of retaining the applied water were sufficient in improvement the crop yield and accordingly improved value of the economic water productivity.

Article
Construction Methods and Their Impact on the Productivity of the Construction Projects Site (Iraq Case Study)

Mohammed Malallah

Pages: 48-60

PDF Full Text
Abstract

This study aims to investigate the impact of various construction methods on labor productivity in Iraq, focusing on traditional, prefabricated steel structures, precast concrete, and mechanical or self-build construction techniques. The research employs a descriptive-analytical methodology, utilizing a structured survey distributed to 200 participants from different construction industry sectors, including engineers, contractors, and field workers. The survey examines key indicators of labor productivity, such as task completion speed, work quality, labor costs, safety, and project cost.The findings reveal significant differences in labor productivity across the construction methods. Traditional construction methods moderately impacted task completion speed and work quality but were less efficient in terms of cost reduction and safety. On the other hand, prefabricated and precast concrete methods demonstrated improvements in work quality, safety, and cost efficiency, although with some limitations regarding flexibility. Steel structures offered enhanced durability and faster construction times, while mechanical and self-build methods utilizing automation significantly reduced labor costs and accelerated the construction process.Based on these results, the study recommends incorporating modern construction methods, such as prefabricated and mechanical techniques, to improve overall productivity in the Iraqi construction sector. Additionally, it emphasizes the importance of training and adapting to these advanced methods to ensure long-term efficiency, safety, and cost-effectiveness in construction projects.

Article
Evaluation of Overall Resource Effectiveness for Job Shop Production System

Lamyaa Mohammed Dawood, Anat Amer Khudairb

Pages: 362-371

PDF Full Text
Abstract

ORE addresses various kinds of losses associated with manufacturing system which can be targeted for initiating improvements. Evaluating ORE will is helpful to the decision maker(s) for further analysis and continually improves the performance of the resources. Overall Resource Effectiveness (ORE) encompasses seven factors are; performance, quality rate, readiness, changeover efficiency, availability of material and availability of manpower. In this research Job shop production of General Company for hydraulic industries, with focus on Damper and Tasks Factory (DTF)is tested as a case study for two of the most customer demand rear dampers (Samaned and Nissan). Data are collected and analyzed for years 2016-2017 to evaluate of ORE values. Results show that process performance factor among other seven factors have the less value causing the highest loss in ORE decrease. Where the highest ORE value is (58.6%) for Nissan and (69.3) for Samaned rare production. Also, time loss due to set up time is detected where it ranges from 3% to about 13% per month for the above mentioned two tested dampers. Results are generated employing Minitab Version 17, Quality Companion Version 3 soft wares. It is recommended to introduce SMED (Single Minute Exchange of Dies) concept that could decrease losses in set up time .Also improvements in maintenance programs are vital, and above all improving process performance values is essential by employing lean manufacturing that result in fast outcomes ,and TQM process improvement strategy for long term outcomes these two process performance strategies may enhance ORE values therefore, decrease losses, and consequently increase quality and productivity.

1 - 4 of 4 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.