Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for product-design

Article
Multi-Objective GA-Based Optimization to Maximize Sustainability for Product Design and Manufacturing

Luma Adnan Al-Kindia, Halla Atiyab

Pages: 195-201

PDF Full Text
Abstract

Responding quickly and economically to the diversification of customer needs has forced manufacturing companies adopting approaches to delivering low cost, high quality sustainable products based on finding a link between the design or the manufacturing processes and other key elements of sustainability; economic, environmental, and social. However, these approaches had limited success. The most likely reason for the lack of integration between the design and manufacturing stages of the product and complexity of addressing the above mentioned three key elements of sustainability due to existing of many variables in relation to design, manufacturing, locations, logistic operations and so on. Taking into account the required integration as well as the associated complexity of considering sustainability elements can lead to large space alternative solutions and it is more difficult to use only exact methods to the optimization of such problem. This paper presents a genetic algorithm (GA) approach aiming to optimize a high sustainability performance by designing a product and the corresponding manufacturing processes for that product. Process optimization is carried out in terms of the highest fitness function achieved where different objectives are to be optimized simultaneously. The proposed GA approach is applied to the industrial case example. The proposed approach can assist decision makers to help explain when justifying their decision on what are the best product design and its manufacturing processes to obtain high sustainability performance.

Article
Integration Environmental Aspects onto Customer Requirement to Develop Green Quality Function Deployment

Maryam Abdul Wahid, Lamyaa Dawood

Pages: 66-78

PDF Full Text
Abstract

The extensive global competition between companies and the development of new industrial technologies have greatly contributed to the current competitive conditions Like industrial companies, customers demand high quality products, low prices and better performance. This fierce competition has led to concerns about improved product design. This development is based on GQFD. Model of this developed Water pump is employed by CAD solid model (version 7). In order to achieve competition and high quality and high performance in the Iraqi market. GQFD demonstrates the balance between product development and environmental protection. Used a water pump for a home air cooler as a case study. Data is collected and distributed using personal interview methods and questionnaire forms to indicate customer requirements. The data is then analyzed using Pareto chart and AHP to prioritize customer needs. These priorities are then placed in house of quality and matrix of relationships between customer requirements and technical characteristics is established. The product has been developed from electrical to mechanical, in addition to using accumulated, stored and recycled materials; it also saves 20% of energy, thereby combining energy reduction with the use of damaged materials and their re-entry into work. As a result, the cost of pump manufacturing will decrease

1 - 2 of 2 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.