Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for piles

Article
Prediction Load-Settlement of Bored PileS Using Artificial Neural Network

Omer Jamel, Khalid Aljanabi

Pages: 17-24

PDF Full Text
Abstract

Pile foundations are typically employed when top-soil layers are unstable and incapable of bearing super-structural pressures. Accurately modeling pile behavior is crucial for ensuring optimal structural and serviceability performance. However, traditional methods such as pregnancy testing, while highly accurate, are expensive and time-consuming. Consequently, various approaches have been developed to predict load settlement behavior, including using artificial neural networks (ANNs). ANNs offer the advantage of accurately replicating substrate behavior's nonlinear and intricate relationship without requiring prior formulation.This research aims to employ artificial neural network (ANN) modeling techniques to simulate the load-settlement relationship of drilled piles. The primary aims of this study are threefold: firstly, to assess the effectiveness of the generated ANN model by comparing its results with experimental pile load test data; secondly, to establish a validation method for ANN models; and thirdly, to conduct a sensitivity analysis to identify the significant input factors that influence the model outputs. In addition, this study undertakes a comprehensive review of prior research on using artificial neural networks for predicting pile behavior. Evaluating efficiency measurement indicators demonstrates exceptional performance, particularly concerning the agreement between the predicted and measured pile settlement. The correlation coefficient (R) and coefficient of determination (R^2) indicate a strong correlation between the predicted and measured values, with values of 0.965 and 0.938, respectively. The root mean squared error (RMSE) is 0.051, indicating a small deviation between the predicted and actual values. The mean percentage error (MPE) is 11%, and the mean absolute percentage error (MAPE) is 21.83%.

1 - 1 of 1 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.