The performance of the construction industry is regarded as one of the most significant variables in the global economic development success of nations. As a result, it requires focusing on strengths to enhance them and weaknesses to address them. This study aims to identify the key factors affecting the objectives of construction projects. To achieve the study aim, previous records and documents of two completed projects were studied carefully to identify problems that occurred and the impact of these problems on the project objectives. After that, an experts' interview was conducted to identify the key factors affecting the purposes of the construction project. The results of this study identified (33) key factors affecting the achievement of the construction project objectives, where the factor "The financial allocation for the project" was the most important, while the factor "Bad a health and safety plan in the project" was the least important.
Responding quickly and economically to the diversification of customer needs has forced manufacturing companies adopting approaches to delivering low cost, high quality sustainable products based on finding a link between the design or the manufacturing processes and other key elements of sustainability; economic, environmental, and social. However, these approaches had limited success. The most likely reason for the lack of integration between the design and manufacturing stages of the product and complexity of addressing the above mentioned three key elements of sustainability due to existing of many variables in relation to design, manufacturing, locations, logistic operations and so on. Taking into account the required integration as well as the associated complexity of considering sustainability elements can lead to large space alternative solutions and it is more difficult to use only exact methods to the optimization of such problem. This paper presents a genetic algorithm (GA) approach aiming to optimize a high sustainability performance by designing a product and the corresponding manufacturing processes for that product. Process optimization is carried out in terms of the highest fitness function achieved where different objectives are to be optimized simultaneously. The proposed GA approach is applied to the industrial case example. The proposed approach can assist decision makers to help explain when justifying their decision on what are the best product design and its manufacturing processes to obtain high sustainability performance.
Plates with interior openings are often used in both modern and classical aerospace, mechanical and civil engineering. The understanding of the effects of two cutouts on the stress concentration factor, maximum stress and deflections in perforated clamped rectangular plates, were considered. Parameters such as location, size of cutout and the aspect ratio of plates are very important in designing of structures. These factors were presently studied and solved by finite element method (ANSYS) program. The results based on numerical solution were compared with the results obtained from different analytical solution methods. One of the main objectives of this study is to demonstrate the accuracy of the analytical solution for clamped square plate. In general, the results of the square clamped plates with two cutouts come out in good agreement. The results presented here indicated that the maximum stress, deflection of perforated plates can be significantly changed by using proper cutouts locations and/or size. The results show that the rectangular plate containing two cutouts arranged along the width is stronger and stiffer than when arranged along the length at a given spacing, and the square plate is always stronger and stiffer than an equivalent rectangular plate for the same loading condition.
The increase in traffic volumes at intersections is one of the important problems that makes difficulties in the traffic movement then leads to traffic congestion in these facilities.The objective of the present study is improvement the traffic operation of the selected intersection (Al-Zeoat intersection) in Al-Ramadi city by analysis and evaluation this intersection and using accepted solutions to improve the traffic operation of Al-Zeoat intersection under local exist conditions and present a best proposal to enhance the performance at the intersection.To achieve these objectives, the traffic volumes data collection and geometric layout for Al-Zeoat intersection that required for the traffic and geometrical analysis were gathered manually, while SIDRA traffic program is used for the requirements of traffic analysis process.
Determinations of unsaturated soil parameters using experimental procedures are time consuming and difficult. In recent years, the soil–water characteristic curve (SWCC) has become an important tool in the interpretation of the engineering behavior of unsaturated soils. Difficulties associated with determining such parameters have justified the use of indirect determination. This paper presents the general nature of the SWCC for soils with different plasticity limits, index and gradation, in terms of gravimetric water content and degree of saturation versus soil matric suction from Anbar governorate. In order to investigate possible relationships between the plasticity limits, index, percent passing no.200 and SWCC, 7 type of soils were tested to find its SWCC experimentally and compared the result with the curves obtained from different model presented in the literature. The objectives of the paper were to check the validity of these models with the experimental results. The results shows a good agreement and to present a simple method for inferring the SWCC for soils, taking into account the liquid limit, plastic limit, plasticity index and percent of fines passing sieve no.200.
Deep mixing technology is used to improve the engineering properties of soil. In this review, previous studies on the properties and problems of weak soils were collected and explained, focusing on silty soils found globally and locally. The study also includes a discussion of physical and chemical improvement methods, specifically (cement columns). The advantages of deep mixing technology are also covered from an engineering and economic point of view, as well as its relationship to the environmental impact, as it is one of the sustainable development techniques due to its use of environmentally friendly materials. In addition, one of the objectives of this research is to study the methods of adding cement, whether in the form of powder (dry method) or mortar (wet method). A comparison was made between them to clarify the advantages and disadvantages. It was found that what distinguishes the use of the dry method from the wet method is that the former is more common. The method's effectiveness depends on the soil's moisture content, so the technique is ineffective in soils with less than 30% water content. As cement hydration produces a cementitious gel (CSH) that binds soil particles together, leading to early strength gain, pozzolanic reactions cause increased shear strength and decreased soil compressibility. Finally, some recommendations are included in this article to understand the behavior of cement columns in improving soil and avoiding problems
The status of the infrastructure of the transport system and then mobility in the governorate of Anbar is deplorable. Therefore, it requires two types of solutions in two phases. This study concerned with the first phase, which is represented by solving the problem of the inadequacy infrastructure in terms of availability between the cities, and work to develop it toward being maximally connected. So, generally speaking this study aimed to facilitate mobility through this network, by improving the accessibility in term of connectivity. The analysis process in this study, have twin objectives: first, to determine how much new linkages we need for our network to be maximally connected as a first stage? Second, Building a legislative framework lends the weight for decision makers in transport agency to take tough decision built up on ranking the new proposed linkages according to their relative values in providing access to the network, and the increment in comparable nodal accessibility due to the new additions. So, there is need for more sensible decisions based on more accurate analysis for deciding the optimum priorities for the new linkages to take place in the stage of development implementation via legislative framework. Therefore, the analysis will deal with topological characteristics for a number of aspects by expressing the simple graph of the network in a matrix format. These aspects are simulated and measured through the matrices powering process and the principles of graph theory. However, in addition to reducing the time the vehicles stays on the road, the study results will assist to divert a large proportion of the traffic volumes concurrently with the implementation process, and this in turn will pave the way to precede the solution of the second phase inside the cities. Not to mention, the legislative framework will bases for the financial framework of the transport agency. Keywords: infrastructure inadequacy& development, accessibility and connectivity, graph theory, matrix representation &powering, new linkage, nodal accessibility , relative value ,optimum priorities (ranking) and Decision making(legislation).
Enhancing the hydrothermal performance of plate-fin microchannels heat sink (PFMCHS) promises smaller size and lighter weight, and then improve the heat removal in consequently increase the speed of electronic devices. In this numerical study, an innovative hydrothermal design of PFMCHS is suggested by inserting elliptic pins inside microchannels in different; aspect ratio (AR) of pin, pin number ratio (ψ) in order to optimize the hydrothermal design of this kind of heat sinks. The main objectives of this study are; investigating the effect of pins on the performance of PFMCHS by investigating the best geometry in the pinned-fin MCHS and which is higher, thermal or hydraulic performance of this kind of heat sinks and what is the optimal number of pins numerically and what about the pressure drop penalty in the proposed design, little, modest or high increase. It is seen that the thermal resistance of the pinned fin MCHS is about 50% lower, and pressure drop of it is much higher than that of the (PFMCHS) under the condition of equal wind velocity. Maximum mechanical fan power reduction obtained is about 57% for the pinned fin MCHS with ψ = 1 and Dh = 1 ×10-3 m compared to the corresponding original channel heat sink. To show the overall performance of the two parameters; aspect ratio (AR), pin number ratio (ψ), the overall JF factor is estimated and the concrete findings shows that the best hydrothermal performance is obtained at the greater aspect ratio which is around overall JF = 1.2. In addition, the trend of overall JF is going down with the pin number ratio, starting from 1.2 to 1.15. And the concrete findings show that pinned fin MCHS provides thermal performance of 1.42 times greater than the smooth one under the corresponding conditions when one pin is used in each channel