The convergence of cloud and edge computing in smart manufacturing offers significant potential for improving efficiency in Industry 4.0. However, task scheduling in this context remains a complex, multi-objective challenge. This study introduces a novel Cloud-Edge Smart Manufacturing Architecture (CESMA), leveraging a hybrid approach that integrates NSGA-II and the Improved Monarch Butterfly Optimization (IMBO) algorithms. The combination utilizes NSGA-II's global search and non-dominated solution capabilities with IMBO's fine-tuning and local optimization strengths to enhance task scheduling performance. Where CESMA combines the scalability and analytics power of cloud computing with edge-based real-time decision-making to address the dynamic demands of smart manufacturing. Through extensive simulations and experiments, the feasibility and effectiveness of CESMA are validated, showing improved task scheduling quality, resource utilization, and adaptability to changing conditions. This research establishes a robust platform for managing the complexities of task scheduling in cloud-edge environments, advancing intelligent manufacturing processes, and contributing to the integration of evolutionary algorithms for real-time industrial decision-making
Responding quickly and economically to the diversification of customer needs has forced manufacturing companies adopting approaches to delivering low cost, high quality sustainable products based on finding a link between the design or the manufacturing processes and other key elements of sustainability; economic, environmental, and social. However, these approaches had limited success. The most likely reason for the lack of integration between the design and manufacturing stages of the product and complexity of addressing the above mentioned three key elements of sustainability due to existing of many variables in relation to design, manufacturing, locations, logistic operations and so on. Taking into account the required integration as well as the associated complexity of considering sustainability elements can lead to large space alternative solutions and it is more difficult to use only exact methods to the optimization of such problem. This paper presents a genetic algorithm (GA) approach aiming to optimize a high sustainability performance by designing a product and the corresponding manufacturing processes for that product. Process optimization is carried out in terms of the highest fitness function achieved where different objectives are to be optimized simultaneously. The proposed GA approach is applied to the industrial case example. The proposed approach can assist decision makers to help explain when justifying their decision on what are the best product design and its manufacturing processes to obtain high sustainability performance.
The field of image processing has several applications in our daily life. The image quality can be affected by a wide variety of deformations during image acquisition, transmission, compression, etc. Image compression is one of the applications where the quality of the image plays an important role since it can be used to evaluate the performance of various image compression techniques. Many image quality assessment metrics have been proposed. This paper proposes a new metric to assess the quality of compressed images. The principle idea of this metric is to estimate the amount of lost information during image compression process using three components: error magnitude, error location and error distribution. We denote this metric as MLD, which combines the objective assessment (error magnitude) and the subjective assessment (error location and error distribution). First, the metric is used to estimate the quality of compressed images using the JPEG algorithm as this is a standard lossy image compression technique. Then, the metric is used to estimate the quality of compressed images using other compression techniques. The results illustrate that the proposed quality metric is correlated with the subjective assessment better than other well-known objective quality metrics such as SSIM, MSE and PSNR. Moreover, using the proposed metric the JPEG2000 algorithm produces better quality results as compared to the JPEG algorithm especially for higher compression ratios
One way of obtaining information about reliability of units is to accelerate their life by testing at higher levels of stress (such as increasing elevated temperatures or voltages). Predicting the lifetime of a unit at normal operating conditions based on data collected at accelerated conditions is a common objective of these tests. Different models of accelerated life testing are used for such extrapolations. Two statistical based models are widely used: parametric models which require a prior specified lifetime distribution, and nonparametric models that relax of the assumption of the life time distribution. The proportional odds model is a nonparametric model in accelerated life testing based on the odds function and show that it gives a more accurate reliability estimates than proportional hazard model. This paper will concentrate on the models of proportional odds nonparametric accelerated life test for reliability prediction.
The concrete members several blessings over steel beam, like high resistance to prominent tem-perature, higher resistance to fatigue and buckling, high resistance to thermal shock, fire re-sistance, robust resistance against, and explosion. However there are some disadvantages as a result of exploitation totally different materials to product it. The most downside of structural concrete member is its deprived the strength to tensile stresses.The bond mechanism between steel bars and concrete is thought to be influenced by multiple parameters, like the strength of the encompassing media, the prevalence of cacophonous cracks within the concrete and therefore the yield stress of the reinforcement. However, properties of concrete mass has significantly effect when it was subjected to elevated temperature.The objective of this paper presents the results that allocating with the bond behavior of the rein-forcement of steel bar systems below static pull-out loading tests subjected to elevated tempera-tures. This numerical technique relies on relative slip and therefore the stress of bond distribu-tions done the embedded length and size of the bar within the concrete cylinder specimens. The obtained results square measure given and commented with the elemental characteristics of ferroconcrete members. The comparison showed smart agreement with experimental results
This research focuses on studying the speed flow density relationships which are considered the fundamental traffic flow relationships. The objective of the present study is to predict statistical models represent these relationships depending on a field survey data collected from Al-Thirthar road in Falluja city.Data were collected by using video-recording technique. The required data were abstracted, analyzed, grouped, and processed using computer programs developed for this purpose. Standard statistical analysis techniques were used to examine and analyze the observed data.FWASIM simulation traffic software program was used to verify the predicted traffic stream models, while the obtained results were presented in this research. To test the validity and reliability of the model, the output results of the predicated model were compared with the output data obtained from FWASIM model using similar input data and segment geometry. The comparison leads to consider that the developed regression model may be used to evaluate the performance of urban streets in Falluja city.
Flow of crude oil in pipelines suffers from a problem of fluid flow pressure drop and high energy consumption for fluid pumping. Flow can be enhanced using either viscosity reduction or drag reduction techniques. Drag reduction (DR) is considered as a most effective and most applicable method. The technique contributes in reducing the frictional energy losses during the flow by addition of little amounts from drag reducing agents. The present work focuses on preparation and application of a new natural and low cost material derived from palm fiber (PF) that has been tested as a drag reducing agent (DRA) for crude oil flow enhancement. This objective has been achieved through designing and constructing of an experimental rig consisting of: a crude oil pipe, oil pump, pressure sensors, solenoid valve and programmable logic control. The additive material (PF) is prepared with different diameters (75µm, 125µm, 140µm) and tested with different concentrations as: 100, 200, 300, 400, and 500 mg/L for reducing the drag inside the oil pipe. The experimental results showed that the fiber with 125µm diameter and 100ppm is the best where the percentage of drag reduction reached 43%. Furthermore, the results of this work proved that PF is an efficient and low cost DRA that can be applied successfully in crude oil pipelines as well as its contribution in the waste management.
CAPTCHA, which stands for Completely Automated Public Turing Test to Tell Computers and Humans Apart, is a commonly employed security measure to distinguish between humans and computers. The Turing Test, designed to guarantee network security, is the foundation of this security technique. Usability is a crucial concern that can prevent human users from engaging in laborious and time-consuming tasks. When designing CAPTCHA, security and usability must be addressed simultaneously. When designing CAPTCHA, it is crucial to address security and usability simultaneously. A concerted effort is required to protect online data and guarantee privacy and security. The personal information of Internet users remains susceptible to theft. This study uses an information extraction technique called CAPTCHA to investigate the hazards associated with violating user privacy. It is a highly harmful process due to hacking, theft, unauthorized reuse, and the breach of user information. This study proposes a privacy preservation system employing concurrent encryption techniques, multilateral security computing, and zero-knowledge proof. The objective is to create a system that allows for uncomplicated and secure puzzle-solving using dice gas. CAPTCHA limits access to users' information. In the overview and application of evidentiary measurable methods, we can draw significant conclusions about the more extensive client group's discernments and encounters with CAPTCHA as a privacy-preserving component.
To create an architecture with a local identity, expresses its environment convenient with contemporary time, we need to examine the architectural traditions of the region and get interest from the results which produced by old architects to be suited with natural and social circumstances. Confusing ideas and non related modern architectural products in addition to the incorrect following to the modern movements, led to lose the local identity and to harden distinguish among different environments (general problem) then there's no closeness with those products and feeling estrangement from them because they forced to our Arabic environment, by copying known architectural compositions here & there in regions with civil and social values different entirely from the west. Generally some of new architects (practically) , and specifically our student (academically) concern with western Architecture more than Islamic Arabic architecture history (specific problem) then the research problem is :there is non _clarity of means which might be a common base and guide for our new Architects & students to create a local architecture harmonize with society & environment , therefore the main objective of the research is: to come out with clear image about these means & fix them in our student minds in architectural schools (for both of academically & practically fields ) Accordingly we have to return to our traditions and investigate their properties and use them in such a way suitable with needs of time and progressive technology. That doesn't mean we have to metaphor formal and external language but we have to analyses the traditions and derive the distinguished sides and using them in modern way to create new modern architecture with local identity.
Our project was divided into two distinct sections, circuit transmitting and receiving ultrasoundWave Based on Laser Light. A Wien Bridge and a Triangle Wave Oscillators used to obtain a sineand a triangular wave, respectively. A comparator circuit which produces Pulse Width Modulation(PWM) that has the same frequency for triangle wave. The PWM was used to drive laserdiode that produced laser light through by MOSFET transistor and received this light by receivingcircuit which consists of a photodiode with resistor as a voltage divider, amplifier circuit to amplifythe signal and filter to get any desired frequency. The main objective of this project primarilywas to realize a transmission-reception system to transfer ultrasound Frequency via Laser withouta guiding medium, using modulation with little quality loss.
The increase in traffic volumes at intersections is one of the important problems that makes difficulties in the traffic movement then leads to traffic congestion in these facilities.The objective of the present study is improvement the traffic operation of the selected intersection (Al-Zeoat intersection) in Al-Ramadi city by analysis and evaluation this intersection and using accepted solutions to improve the traffic operation of Al-Zeoat intersection under local exist conditions and present a best proposal to enhance the performance at the intersection.To achieve these objectives, the traffic volumes data collection and geometric layout for Al-Zeoat intersection that required for the traffic and geometrical analysis were gathered manually, while SIDRA traffic program is used for the requirements of traffic analysis process.
The main objective of this study is to determine the effect of vortex generators on a friction factor for fully developed flow of a fluid such as air. Longitudinal vortices can be generated in a channel flow by punching or mounting protrusions in the channel wall. Such vortex generators (VGs) can be classified into delta wing, rectangular wing, pair of delta-winglet and pair of rectangular winglet. These longitudinal vortices disrupt the growth of the boundary layer and lead to enhance the heat transfer rate between the working fluid and the conductor channel wall, but this enhancement is associated with increasing in a pressure gradient along the axial length of the channel. So, the friction factor for fully developed air flow in an equilateral triangular duct is investigated experimentally with Reynolds number ranging from (31,000) to (53,000) and the size of the generators was kept constant for three cases which are single, double, and triple pairs of delta–winglet type of vortex generators embedded in the turbulent boundary layer for attack angle of generator of (30, 40, and 50 ) degree. The results show that the friction factor increases by about (43.5 %) when the angle of attack is varied from (30 deg) to (50 deg) for the triple pairs case compared with the base case (without VG).
WMAN (wireless metropolitan area network) technology is based on the IEEE 802.16 air interface standard suite, which provides the wireless technology for fixed and nomadic data access. WMAN employs orthogonal frequency division multiplexing (OFDM), and supports adaptive modulation and coding depending on the channel conditions. The objective of this paper is to study the performance of the IEEE 802.16d WMAN physical layer under Nakagami model as a Multi-path and frequency-selective fading channel beside the additive white Gaussian noise (AWGN) and Doppler. Finally, we compared it with the Rayleigh fading model. The transmission bit rate, Probability of Error ( ) and estimated SNR have been compared under single/multi path propagation conditions.
Matrix converters (MCs) have attracted significant interest and found extensive applications across multiple industries owing to their desirable characteristics. These include the capability to produce sinusoidal currents at both input and output, substantial size reduction, and enhanced reliability by minimizing significant passive components. This paper explores the potential of MC technology as a viable alternative to conventional AC-DC-AC converters in industrial applications. It discusses recent advancements in MC structural configurations, modulation/control algorithms, and multiphase structures and control systems. The paper offers an in-depth review of modern industrial uses of MC technology. It also delves into different methods for managing induction motors, particularly the DTC (Direct Torque Control) approach. The study explores the intricacies of DTC and its relationship with SVM. The primary research objective is to examine the performance of an IM when operated with an SVPWM inverter, focusing on harmonic analysis of voltages and currents. Various PWM methods regulate the voltage and frequency supplied to the IM. Sinusoidal Pulse Width Modulation (SPWM) and SVPWM are the two most commonly used 3-phase Voltage Source Inverter strategies. The growing adoption of SVPWM is driven by its ability to reduce harmonic content in voltage and enhance the fundamental output voltage of the IM. Consequently, this study models a DTC-SVM theory-driven IM using MATLAB/SIMULINK to control the speed of induction motors. The following values were calculated for the system: Quality factor=2.236, Damping ratio=4.45, and the cut-off frequency (fc=355.88H).
The aim of current work is to investigate the tensioned composite plates with two types of cutouts. Many industrial applications use composite matrix with reinforcement fiber to obtain better properties. The objective of this work is divided into two parts, first the experimental work covers the measuring of the normal strain (εx) at the edges of (circular & square) holes that are perpendicular to the direction of the applied loads with different number of layers and types of cutouts of composite materials by using strain gages technique under constant tensile loads to compare with the numerical results. The second part is numerical work, which involves studying the static analysis of symmetric square plates with different types of cutout (circular – square). In static analysis, the effect of the following design parameters on the maximum stress (σx), strain (εx) and deflection (Ux) is studied. This part of investigation was achieved by using the software finite element package (ANSYS 5.4).
The main objective of this paper is to create a method for designing and studying the performance of a multistage axial flow compressor. A mathematical methodology based on aerothermodynamics is used to study the on /off design performance of the compressor. Performance curves are obtained by changing the performance parameters in terms of design parameters (diffusion factor, solidity, Mach number, and inlet flow angle). Results show the great effect of diffusion factor on increasing efficiency than that of solidity, also the effect of both (diffusion factor and solidity) in increasing the amount of compression and efficiency of the compressor. Higher efficiency was found at the mean line between the root and tip of the blade. Best lift to drag ratio is found at inlet flow angle of (55o).
Satellites may provide data with various spectral and spatial resolutions. The spatial resolution of panchromatic (PAN) images is higher, but the spectral resolution of multispectral (MS) images is greater. There is Satellite sensors limitation for capturing an image with high spatial and spectral resolution, due to the hardware design of the sensors. Whereas many remote sensing, as well as GIS applications, need high spatial and spectral resolution. Image fusion merges images of different spectral and spatial resolutions based on a certain algorithm. It can be used to overcome the sensor's limitation and play an important role in the extraction of information. The standard image fusion approaches lose spatial information or distort spectral characteristics. Optimizations of fusion rules can overcome and degrade the distortions as the fusion core is the image fusion rules. In this paper, the Grey Wolf Optimizer (GWO) is used to find the optimal injection gain, as most distortions in image fusion are caused by the extraction and injection of spatial detail. Both qualitative and quantitative metrics were utilized to evaluate the quality of the merged image. The mentioned metrics that were used commonly for evaluation of image fusion results support the proposed algorithm for image fusion as the output image was qualitatively and quantitatively growth. In the future the proposed method can be updated by increasing the objective function dimensions to two or three for getting a best fused image.
The dynamics of wind turbine has to be studied carefully to avoid unpredictable outputs and to make sure that consistent and efficient power is supplied according to the load requirements. There is a great and urgent necessity to increase the efforts in the development of the researches of the renewable energy to decrease the dependency on the conventional ones. The objective of this research is to make a contribution to the ongoing wind turbine research in the area of modeling, which is the first step required for the control and implementation of wind turbines. The wind turbine transfer function is derived and its performance has been established using the MATHLAB Software. This research provided a different approach to wind turbine modeling methodology. The results of this research may be used in another step for completing the control process of the wind turbine.