The Cooper-Harper rating of aircraft handling qualities has been adopted as a standard for measuring the performance of aircraft. In the present work, the tail plane design for satisfying longitudinal handling qualities has been investigated with different tail design for two flight conditions based on the Shomber and Gertsen method. Tail plane design is considered as the tail/wing area ratio. Parameters most affecting on the aircraft stability derivative is the tail/wing area ratio. The longitudinal handling qualities criteria were introduced in the mathematical contributions of stability derivative. This design technique has been applied to the Paris Jet; MS 760 Morane-Sualnier aircraft. The results show that when the tail/wing area ratio increases the aircraft stability derivative increases, the damping ratio and the natural frequency increases and the aircraft stability is improved. Three regions of flight conditions had been presented which are satisfactory, acceptable and unacceptable. The optimum tail/wing area ratio satisfying the longitudinal handling qualities and stability is (0.025KeywordsLongitudinal Handling---Stability---Tail Design
An experimental investigation as well as nonlinear analysis is carried out in this paper to study the behavior of polymer members (Epoxy & Polyester) under direct tension. The ANSYS model accounts for nonlinear phenomenon, such as, Tension Softening Material (TSM) and Enhanced Multilinear Isotropic Softening (EMIS) models. The polymer specimens are modeled using PLANE82 element – eight node plane element – eight node plane element, which is capable of simulating the failure behavior of polymer material members. The intention of this paper is thereby to discuss the proposed softening models to validate the complete Stress-Strain and Load-Deflection response of prismatic specimens subjected to uniaxial tension. The outcomes from the verifications of both modeling techniques have shown good agreement with the experimental results obtained from literature.