Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for nonlinear-finite-element

Article
Assessment the Shear Behavior of Sustainable Thick Hollow Core Slab Using Experimental and Nonlinear Finite Element Modelling

Yousif Nassif Sabr, Dr. Husain Khalaf Jarallah

Pages: 35-43

PDF Full Text
Abstract

This investigation provides experimental results and nonlinear analysis by using finite element model of thick hollow core slab made from recycled lightweight material. Four hollow core slabs specimens were cast and tested in this investigation with dimensions (1200mm length, 450mm width and 250mm thickness). The crushed clay brick was used as a coarse aggregate instead of gravel. The iron powder waste and silica fume were used in order to increase the compressive strength of concrete. The techniques reduction hollow length and use shear reinforcement were used to improve shear strength and avoid shear failure. The specimens were tested by applying two-line load up to failure. The experimental results were showed these techniques were resisted the shear failure significantly and works to change failure mode from shear to flexural failure. Finite element computer software program (ANSYS) was used to analysis hollow core slabs specimens and compare the experimental results with the theoretical results. Good agreement have been obtained between experimental and numerical results.

Article
Nonlinear Response of Uniformly Loaded Paddle Cantilever Based upon Intelligent Techniques

Mohammed K. Abd, Akeel Ali Wannas

Pages: 60-69

PDF Full Text
Abstract

Modeling and simulation are indispensable when dealing with complex engineering systems. It makes it possible to do essential assessment before systems are built, Cantilever, which help alleviate the need for expensive experiments and it can provide support in all stages of a project from conceptual design, through commissioning and operation. This study deals with intelligent techniques modeling method for nonlinear response of uniformly loaded paddle. Two Intelligent techniques had been used (Redial Base Function Neural Network and Support Vector Machine). Firstly, the stress distributions and the vertical displacements of the designed cantilevers were simulated using (ANSYS v12.1) a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The Paddle Cantilever model has 2 NN; NN1 has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, 8 nodes at hidden layer and one output node representing the maximum deflection response and NN2 has inputs nodes representing maximum deflection and paddle size, length, width and thickness and one output representing sensitivity (∆R/R). The result shows that of the nonlinear response based upon SVM modeling better than RBFNN on basis of time, accuracy and robustness, particularly when both has same input and output data.

Article
Torsional Behavior of Strengthened Reinforced Concrete Beams by CFRP Sheets: Parametric study

Mashael A. Alrawi, Mohammad N. Mahmood

Pages: 229-244

PDF Full Text
Abstract

This paper presents a nonlinear finite element analysis of reinforced concrete beams subjected to pure torsion. A verification procedure was performed on three specimens by finite element analysis using ANSYS software. The verification with the experimental work revealed a good agreement through the torque-rotation relationship, ultimate torque, rotation, and crack pattern. The studied parameters of strengthening by CFRP sheets included strengthening configurations and number of CFRP layers. The confinement configuration methods included full wrapping sheet around the beam, U-shaped sheet, ring strips spaced at either 65 or 130 mm, longitudinal strips at the top and bottom faces, U-shaped strips in addition to the number of layers variable. It was found that the performance of the beam for resisting a torsional force was improved by (33-49%) depending on the method of coating with CFRP sheets and the number of used layers. A change in the angle of twist, as well as the shape of the spread of cracks, was also noticed from the predicted results.

Article
Cyclic Torsion Behavior of Prestressed Concrete Beams

Akram Shakir Mahmouda, Zahraa Ameed Alib

Pages: 233-244

PDF Full Text
Abstract

The nonlinear finite element analysis has become an important tool, for the structural design and assessment of prestressed reinforced concrete members. However, design and assessment of torsion are still done with simplified analytical or empirical design methods. This paper pre-sents results from a numerical analysis using the ANSYS finite element program to simulate a prestressed concrete beams subjected to static and cyclic torque. The eight- node brick ele-ments SOLID65 are used for the idealization of concrete while the reinforcements are idealized by using 3D spar element LINK8. The steel plates are idealized by using three dimensional solid elements SOLID45. The results showed that the general behavior of the finite element models represented by torque- twist angle relationships show good agreement with the experimental results from the Abdullah's beams.

Article
Nonlinear Finite Element Analysis of Space Truss

Ahmed Farhan Kadhum

Pages: 190-204

PDF Full Text
Abstract

This paper presents an analytical investigation which includes the use of three dimensional nonlinear finite elements to model the performance of the space trusses by using (ANSYS 11.0) computer program. The numerical results show very good agreement (100%) with experimental results, while the graphical option reflects the behavior of the structure under the applied loads because of the ability of this option to simulate the real behavior of the structure under these loads. Also finite element models of the space truss simulate the lateral deflection of the top chord members especially at the corners, and the twisting of the bottom chords.

1 - 5 of 5 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.