Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for layer

Article
BEHAVIOR OF MULTI-LAYER COMPOSITE CONTINUOUS BEAMS WITH PARTIAL INTERACTION

Khalel I. Aziz

Pages: 51-68

PDF Full Text
Abstract

In this study an attempt is made to develop a method of analysis dealing with a multi-layer composite continuous beam , for linear material and shear connector behavior in which the slip (horizontal displacement) and uplift force (vertical displacement) are taken into consideration. The cross-sectional area for the beam consists of three layers varying in thickness and shear stiffness. The analysis is based on a approach presented by Roberts[1], basically for two layer simply supported beam, under uniform and point loads , which takes into consideration horizontal and vertical displacement in interfaces. The analysis led to a set of eight differential equations containing derivatives of the fourth and third order. A program based on the present analysis is built using finite difference method using boundary conditions. A comparison between the present analytical solution and previous studies shows close agreement. Continuous composite beams are very important element in construction of high rise buildings , multi-story frames and bridges, due to great advantages that can be obtained by using this sort of structural elements, such as reducing the beam moments, suitable reduction in deflections. The model deals with continuous beam consisting from three layers as a cross-sectional area with inter-layer slip. The cross-sectional area consist of composite material including intermediate layer from concrete and an upper and lower material with high strength in tension and compression ( i.e. steel plates or steel beams )

Article
ANALYSIS OF MULTI-LAYER COMPOSITE SIMPLY SUPPORTED BEAM UNDER BLAST LOADING

Ahmed T. Al, Khaleel I. Aziz

Pages: 98-117

PDF Full Text
Abstract

In this study an attempt is made to derive governing equations satisfying equilibrium and compatibility, for multi-layer composite simply supported beam under blast loading , for linear material and shear connector behavior in which the slip (horizontal displacement) and uplift force (vertical displacement) are taken into consideration. The analysis is based on an approach presented by Roberts, which takes into consideration horizontal and vertical displacements in interfaces. The model consists of a simply supported beam with three layers having a cross-sectional area ,different dimensions and material properties. The analysis led to a set of six differential equations containing derivatives of the fourth and third order. The blast loading was considered as a function of time. Explosions have different effects including blast, penetrations and fragmentation. The blast is the main effect which hits the structure in short duration. Multi –layer composite construction is the best type of constructions to resist the blast loading ; according to this , multi-layer composite construction is used for air-craft and marine industries. Analysis of composite beam under blast load , taking in consideration vertical and horizontal displacements, leads to six differential equations , the load is taken as a function of time.

Article
Temperature Distribution Through Asphalt Pavement in Tropical Zone

khalid S.Shibib

Pages: 188-197

PDF Full Text
Abstract

Temperature distribution through asphalt and the underlying layer have been obtained numerically using finite element method where a varying induced heat from sun and environment cause fluctuating temperature distribution throughout .The maximum effect of these parameters on the temperature of the asphalt is expected in summer, so the temperature distribution was studied in the summer only. Some interesting results were found ; at tropical zone such as in Baghdad the asphalt surface temperature may reach (70 C ) and it is reduced with depth .Due to fluctuating environment heat effect, the subsequent temperature of the asphalt and the underlying layer may fluctuating with some delay and damping depending on the layers thermal properties , these result may be used later to predict both the erosion rate of car tiers and asphalt thickness, also the preserved energy using asphalt layer may be used to confined heat for further usage as in electrical generation.

Article
Rutting Performance of Asphalt Layers Mixtures with Inclusion RAP Materials

Abdalsattar M. Abdalhameed, Duraid M. Abd

Pages: 203-210

PDF Full Text
Abstract

sphalt is the most recycled materials around the world and the amount of RAP materials can be significantly increased with the application of good RAP management applications. In Iraq, the real inclusion of RAP materials in asphalt mixtures has not been applied yet in the field. It is therefore that there is a need to characterize the effect of inclusion RAP materials in asphalt mixtures with particular reference to permeant deformation/rutting resistance. The aim of this study is to evaluate the best layer of pavement structure; base, binder, and surface layers for inclusion (RAP) materials. In addition, highlight the best percentage that can be added from RAP to achieve positive results and better than that associated reference mixture in terms of rutting resistance. RAP materials collected from different sources Karbala and Fallujah, were adopted in this study at percentages of 20%, 30%, and 40% by weight of the asphalt mixture. Two scenarios of incorporating RAP materials have been adopted. The first is considered that RAP as a black rock in which the effect of aged binder surrounding the aggregate of RAP is neglected while, the letter is not considered RAP as black rock and the influence of aged binder in RAP materials has been taken into consideration. Dora bitumen has adopted in the current study which is used in common in Iraq. It has been highlighted the best layer in which RAP can be incorporated is the base layer, with a percentage up to 40% that RAP without considering RAP black rocks regardless the sources of RAP.

Article
Use of Phase Change Material in Residential Walls to Reduce Cooling Load

Mustafa B. Al-Hadithi

Pages: 72-86

PDF Full Text
Abstract

This paper describes a numerical method for calculating the temperature distribution and latent heat storage (LHS) in the treated wall (TW) and non-treated wall (NTW). The developed method was assumed that the outer cement layer (Iraqi wall) enveloping the external wall of building and houses are contains paraffin wax as a phase change material (PCM). (25%) is the volume percentage of paraffin wax is mixed with cement which forming a treated layer. A comparison results between the (TW) and (NTW) has been done. The paper presents a simple calculation of case study for air-conditioning in two walls type of residential building. The outer solar air temperatures as function of day time are considered for a hot day in summer (July) for Baghdad city. The aim of this paper was to obtain physical validation of the numerical results produced from using developed FORTRAN program. This validation was obtained through a comparison of numerical solution of two different wall compositions exposed to the same external and internal load conditions. The calculations on transient heat transmissions across different walls were conducted. It was found that when using the (TW) with (PCM) produces lower surface and heat flux towards the cooling space with respect to (NTW).

Article
EFFECT OF VORTEX GENERATORS ON A FRICTION FACTOR IN AN EQUILATERAL TRIANGULAR DUCT

Hamdi E. A. Zangana

Pages: 78-86

PDF Full Text
Abstract

The main objective of this study is to determine the effect of vortex generators on a friction factor for fully developed flow of a fluid such as air. Longitudinal vortices can be generated in a channel flow by punching or mounting protrusions in the channel wall. Such vortex generators (VGs) can be classified into delta wing, rectangular wing, pair of delta-winglet and pair of rectangular winglet. These longitudinal vortices disrupt the growth of the boundary layer and lead to enhance the heat transfer rate between the working fluid and the conductor channel wall, but this enhancement is associated with increasing in a pressure gradient along the axial length of the channel. So, the friction factor for fully developed air flow in an equilateral triangular duct is investigated experimentally with Reynolds number ranging from (31,000) to (53,000) and the size of the generators was kept constant for three cases which are single, double, and triple pairs of delta–winglet type of vortex generators embedded in the turbulent boundary layer for attack angle of generator of (30, 40, and 50 ) degree. The results show that the friction factor increases by about (43.5 %) when the angle of attack is varied from (30 deg) to (50 deg) for the triple pairs case compared with the base case (without VG).

Article
Study of WMAN Physical Layer under Fading Channels

Hatem Fahad Frayyeh

Pages: 21-31

PDF Full Text
Abstract

WMAN (wireless metropolitan area network) technology is based on the IEEE 802.16 air interface standard suite, which provides the wireless technology for fixed and nomadic data access. WMAN employs orthogonal frequency division multiplexing (OFDM), and supports adaptive modulation and coding depending on the channel conditions. The objective of this paper is to study the performance of the IEEE 802.16d WMAN physical layer under Nakagami model as a Multi-path and frequency-selective fading channel beside the additive white Gaussian noise (AWGN) and Doppler. Finally, we compared it with the Rayleigh fading model. The transmission bit rate, Probability of Error ( ) and estimated SNR have been compared under single/multi path propagation conditions.

Article
Effect of Adding Degassing (Ar-N2) on Hardness and Microstructure of Recycling Aluminum Cans

Mazin N. Ali

Pages: 38-42

PDF Full Text
Abstract

In this work the effect of degassing on hardness and microstructure of aluminum recycled cans using aluminum beverage cans scrap from different locations in Baghdad wastes had been studied. Aluminum cans were shredded and ground into small pieces. It was processed through a gas fired to eliminate the coated layer (paint or lacquer on the metal). Generally the scrap is divided into two groups before charging to the furnace, one without adding degassing and the other degased with (Ar-N2). When temperature exceed 690C° molten aluminum was pour into two molds, after cooling. The two ingots were expose to porosity test, hardness, and microstructure. It was found from recycled cans ingot behave like short freezing range alloys. The main form of shrinkage porosity is localized external sink, appeared at the heat centers or at last region to be solidify. This had been verified clearly by microstructure of many regions of the ingot without adding a degasser. Either defect or decrease in hardness was clearly seen in the ingot without degassing addition. In addition to oxides, a number of additional compounds could be considered inclusions (intermetallic phase particles) in cast structures. Where the main conclusion was to remove gases without using a degassing to ingot decadence on the first gas fire on the cans to remove all paint or lacquer on the metal, but this was not sufficient and properly we need to add degassing to ingots. Finally this was clearly shown from the results of the ingot with adding a degassing had 89 kg/mm2 HV rather than 61 kg/mm2 for ingot without degassing

Article
Thermal Stresses Distribution Induced in a Chimney Shell Structure of a Power Plant

Khalid J. Al-Horan

Pages: 1-10

PDF Full Text
Abstract

In The present work, a thermal analysis of two different chimneys by studying the effect of the flue gases on the chimney shell structure was presented. A computer program was constructing using Fortran language to estimate the thermal stresses that: radial, circumferential and longitudinal thermal stresses which will induced as a result of thermal gradient across the chimney wall structure. The results show, the radial thermal stresses has the minimum value at the middle of the concrete layer in the unlined chimney. The circumferential and longitudinal thermal stresses are transferred from the negative value to the positive value. The maximum value of stresses is found in the inner surface negative value and on the outer surface positive value of the chimney.

Article
Experimental Investigation of Heat Reduction through Walls Using Phase Change Material

Osama Rafie Labed, Mustafa B. Al-hadithi, Obaid T. Fadhil

Pages: 245-251

PDF Full Text
Abstract

The reducing of heat gain through the outer walls of the buildings in summer will contribute in reducing the air conditioning costs. This is one of the best features of design requirements nowadays. To achieve this, the phase change materials (PCM) can be used as an embedded material in the walls to reduce heat transfer. The paraffin wax is one of the common materials used as a PCM in the building walls. The paraffin wax is used in this study with (20%) volume percentage in the external layer of the treated wall. In the present work, the treated wall (with embedded wax in the wall) and non-treated walls have been experimentally investigated. Two Iraqi wall models were employed to run the experiments, whereby these models were exposed to an external heat source using (1000 W) projector for each model. The temperatures were recorded at different locations in the walls during the charging and discharging periods. The results showed that the temperature of the internal surface for the treated wall was lower than that of the non-treated wall at the end of the discharging period (6 hr) where the temperature difference between the treated and non-treated walls was reached (1.6℃).

Article
Numerical Modelling and Experimental Investigation of Water Distribution in Stratified Soil Under Subsurface Trickle

Ayad Mohammed, Basim Abed

Pages: 94-101

PDF Full Text
Abstract

The studying of the distribution of wetting patterns in soils having a stratified profile is of great importance due to the presence of this type of profile in abundance in agricultural lands, including greenhouses. Therefore, there was a need to develop a numerical program that predicts the dimensions of the wet area of the subsurface drip irrigation system under different operating conditions for purpose design and manage these systems properly to avoid water losses resulting from evaporation or deep penetration. The present study aims to develop a two-dimension model simulates the wetting pattern in stratified soils using (HYDRUS-2D) software and study the effect of soil hydraulic properties and different operating conditions on the progress of the wetness pattern and the interference pattern between two wetting fronts. Laboratory experiments were carried out for the system of subsurface drip irrigation in stratified soils that consisted of three layers (silty clay loam soil, loamy sand soil, and sand soil) arranged from bottom to up.  Three different emitter flow rates 0.5, 1, and 2 l/h were tested, as well as three different initial moisture contents for each soil layer were considered. The interference pattern between two wetting fronts of two emitters with different spacing between emitters 30, 40, and 50 cm was studied. A numerical model was developed to guess the horizontal and vertical dimensions of the wetting zone for the single emitter and the pattern of interference between the two wetting fronts of two emitters. The predicted values obtained from the numerical model were compared with those obtained from laboratory experiments. Statistical analysis of the obtained data showed that the developed numerical model has a good ability to guess the dimensions of the wet pattern of the single and the two emitters and there were good agreements between the predicted and the experiments results and minimum values of RMSE ranged between 0. 5 and 3.6 were achieved.

Article
Behaviour of Reinforced Polymer Modified High Strength Concrete Slabs under Low Velocity Impact

Abdulkader Ismail Al-Hadithi

Pages: 171-189

PDF Full Text
Abstract

This research investigates the impact resistace of reinforced high strength concrete slabs with steel meshes (BRC) modified by styrene butadiene rubber (SBR) with different weight ratios of polymer to cement as follows: 3%, 5% and 7%. Reference mix was produced for comparison of results. For all selected mixes, cubes (100×100×100mm) were made for compressive strength test at (365) days. In conducting low-velocity impact test, method of repeated falling mass was used: 1400gm steel ball falling freely from height of 2400mm on reinforced panels of (50×50×800 mm) reinforced with one layer of (BRC). The number of blows causing first crack and final perforation (failure) were calculated, according to the former results, the energy of each case was found. Results showed an improvement in compressive strength of polymer modified high strength concrete (PMHSC) over reference mix; the maximum increase being of it were (3.93%-11.96%) at age of (365) days. There is significant improvement in low-velocity impact resistance of all polymer modified mixes over reference mix. Results illustrated that polymer modified mix of (3%) give the its higher impact resistance than others, the increase of its impact resistance at failure over reference mix was (154.76%) while, for polymer modified mix (5%) it was (30.95%) and it was (14.28%) for polymer modified mix of (7%).

Article
Predicting the Daily Evaporation in Ramadi City by Using Artificial Neural Network

Atheer Saleem Almawla

Pages: 134-139

PDF Full Text
Abstract

In this paper the artificial neural network used to predict dilly evaporation. The model was trained in MATLAB with five inputs. The inputs are Min. Temperature, Max. Temperature, average temperature, wind speed and humidity. The data collected from Alramadi meteorological station for one year. The transfer function models are sigmoid and tangent sigmoid in hidden and output layer, it is the most commonly used nonlinear activation function. The best numbers of neurons used in this paper was three nodes. The results concludes, that the artificial neural network is a good technique for predicting daily evaporation, the empirical equation can be used to compute daily evaporation (Eq.6) with regression more than 96% for all (training, validation and testing) as well as, in this model that the Max. Temperature is a most influence factor in evaporation with importance ratio equal to (30%) then humidity (26%).

Article
TAIL PLANE DESIGN FOR SATISFYING LONGITUDINAL HANDLING QUALITIES

Yahya A. Faraj, Farag M. Mohammed

Pages: 1-14

PDF Full Text
Abstract

The Cooper-Harper rating of aircraft handling qualities has been adopted as a standard for measuring the performance of aircraft. In the present work, the tail plane design for satisfying longitudinal handling qualities has been investigated with different tail design for two flight conditions based on the Shomber and Gertsen method. Tail plane design is considered as the tail/wing area ratio. Parameters most affecting on the aircraft stability derivative is the tail/wing area ratio. The longitudinal handling qualities criteria were introduced in the mathematical contributions of stability derivative. This design technique has been applied to the Paris Jet; MS 760 Morane-Sualnier aircraft. The results show that when the tail/wing area ratio increases the aircraft stability derivative increases, the damping ratio and the natural frequency increases and the aircraft stability is improved. Three regions of flight conditions had been presented which are satisfactory, acceptable and unacceptable. The optimum tail/wing area ratio satisfying the longitudinal handling qualities and stability is (0.025KeywordsLongitudinal Handling---Stability---Tail Design

Article
Experimental and simulation investigation of porous Functionally Graded beam under bending loading

Muthanna Ismaeel Fayyadh, Arz Qwam Alden

Pages: 98-107

PDF Full Text
Abstract

In recent decades, functionally graded porous structures have been utilized due to their light weight and excellent energy absorption. They have various applications in the aerospace, biomedical, and engineering fields. Therefore, the balance between material strength and light weight is the goal of the researchers to decrease the cost. Samples of PLA material were designed and manufactured using a 3D printer according to international standard specifications to study the effect of porosity gradient through thickness. An experimental three-point bending test was performed, and then simulations were performed using ANSYS 2022 R1 software on samples with functionally gradient different porosity layers to verify the experimental results. The results from the experiment and the numerical values were in excellent alignment with an error rate of no more than 13%. The maximum bending load and maximum deflection of the beam were specified experimentally and compared with the numerical solution. The maximum bending and the maximum deflection When the porosity layer in the middle of the beam, matched the ideal maximum bending load (190,194) N experimentally and numerically, respectively. The maximum deflection (5.9,6.4) mm experimentally and numerically, respectively was obtained in samples with varying porous layers.

Article
The Effect of the Hollow Ratio on the Natural Convection Heat Transfer from Upward Heated Plates at Constant Heat Flux

Arz Yahya Rzayeg, Saad Mohamed Jaleel, Mashaan Ibrahem Hassan

Pages: 131-142

PDF Full Text
Abstract

The present research studies experimentally the effect of the ratio of the centurial hollow on the average of laminar convective heat transfer and the thermal gradation of the thermal boundary layer of three square flat plates. An experimental set-up was made for this purpose containing basically three uniformly Aluminum flat plates of a centurial hollow representing (0.25,0.5,0.75) of the entire surface area of each plate. Each of the three plates were heated by a constant heat flux for a rang of Rayleigh number of (5.62x105≤Ra≤1.67x106).The study showed that increasing the hollow ratio causes to increase the average of convective heat transfer by increasing the average Nusselt number, and the increasing average from a ratio to another decreases by the increases of the hollow ratio. The increasing between the two surfaces at (m=0.25&m=0.5) reached (39.6%) and for (m=0.5&m=0.75) was less than that and reached (29.2%).The increase average between the biggest and smallest hollow ratio was (78%).The study also showed that the maximum thermal gradation was on the out side edge of the plates and increases with the increase of Rayleigh number and the hollow ratio.

Article
Nonlinear Response of Uniformly Loaded Paddle Cantilever Based upon Intelligent Techniques

Mohammed K. Abd, Akeel Ali Wannas

Pages: 60-69

PDF Full Text
Abstract

Modeling and simulation are indispensable when dealing with complex engineering systems. It makes it possible to do essential assessment before systems are built, Cantilever, which help alleviate the need for expensive experiments and it can provide support in all stages of a project from conceptual design, through commissioning and operation. This study deals with intelligent techniques modeling method for nonlinear response of uniformly loaded paddle. Two Intelligent techniques had been used (Redial Base Function Neural Network and Support Vector Machine). Firstly, the stress distributions and the vertical displacements of the designed cantilevers were simulated using (ANSYS v12.1) a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The Paddle Cantilever model has 2 NN; NN1 has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, 8 nodes at hidden layer and one output node representing the maximum deflection response and NN2 has inputs nodes representing maximum deflection and paddle size, length, width and thickness and one output representing sensitivity (∆R/R). The result shows that of the nonlinear response based upon SVM modeling better than RBFNN on basis of time, accuracy and robustness, particularly when both has same input and output data.

Article
Effect of Delta–Winglet Vortex Generators on a Forced Convection Heat Transfer in an Asymmetrically Heated Triangular Duct

Hamid E.Zangana, Adnan A. Abdul-Rassol, Mohanad A. Al-Taher

Pages: 31-44

PDF Full Text
Abstract

An experimental investigation is performed to study the friction factor ( f ) and convection heat transfer coefficient (h) behavior in an asymmetrically heated equilateral triangular duct by using delta–winglets vortex generators which are embedded in a turbulent boundary layer. Two side walls of the heated test section are electrically heated with a constant heat flux, whereas the lower wall is indirectly heated. Reynolds number (Re) is ranged from (23,000) to (58,000). Two sizes and three attack angles of vortex generators are studied here for three cases; single, double, and treble pairs of generators. Each pair was supported in one wall of the test section at the various locations from the leading edge. The indicated results that friction factor ( f )and Nusselt number (Nu) are relatively proportion with the size, number and the inclination angle of the generators. The ( f ) decreases as airflow rate increases whereas Nu number increases. The present data of ( f ) is less than the data of Chegini by about (6.5 %) and overpredicts the data of Altemani by about (1.7 %).

1 - 18 of 18 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.