Enhancing the hydrothermal performance of plate-fin microchannels heat sink (PFMCHS) promises smaller size and lighter weight, and then improve the heat removal in consequently increase the speed of electronic devices. In this numerical study, an innovative hydrothermal design of PFMCHS is suggested by inserting elliptic pins inside microchannels in different; aspect ratio (AR) of pin, pin number ratio (ψ) in order to optimize the hydrothermal design of this kind of heat sinks. The main objectives of this study are; investigating the effect of pins on the performance of PFMCHS by investigating the best geometry in the pinned-fin MCHS and which is higher, thermal or hydraulic performance of this kind of heat sinks and what is the optimal number of pins numerically and what about the pressure drop penalty in the proposed design, little, modest or high increase. It is seen that the thermal resistance of the pinned fin MCHS is about 50% lower, and pressure drop of it is much higher than that of the (PFMCHS) under the condition of equal wind velocity. Maximum mechanical fan power reduction obtained is about 57% for the pinned fin MCHS with ψ = 1 and Dh = 1 ×10-3 m compared to the corresponding original channel heat sink. To show the overall performance of the two parameters; aspect ratio (AR), pin number ratio (ψ), the overall JF factor is estimated and the concrete findings shows that the best hydrothermal performance is obtained at the greater aspect ratio which is around overall JF = 1.2. In addition, the trend of overall JF is going down with the pin number ratio, starting from 1.2 to 1.15. And the concrete findings show that pinned fin MCHS provides thermal performance of 1.42 times greater than the smooth one under the corresponding conditions when one pin is used in each channel
Heat exchangers are considered essential parts in many industrial applications. The construction process for heat exchangers is completely complex because accurate measurements of the penalty of pressure-drop and the rate of heat transfer are needed. Designing a compact heat exchanger with a high heat transfer rate, while utilizing the least amount of pumping power, is the main design challenge. The most recent investigations (including experimental results, numerical models, and analytical solutions) in the field of circular tube heat exchangers in general, and twisted tapes and wire coils in particular, are covered in this review article, which has more than 90 references. The enhancement techniques in heat exchangers tubes can generally be separated into three groups: active, passive, and hybrid (compound) approaches. This article reviews the literature on advancements made in passive enhancement approaches, with a specific focus on two types of passive promoters that employ twisted tapes and wire coils. The main contribution of this research is to highlight the behavior and structure of fluid flow and the heat transfer features for the twisted tapes and the wire coils. It also explains how these passive promoters can be used in circular tube heat exchangers to improve hydrothermal performance. Where, the installation of wire coils and twisted tapes considerably alters the flow pattern and aids in the improvement of heat transfer. Where, comprehending the behavior of fluid flow is crucial and contributes to the enhancement of heat transfer. Twisted tapes are less effective in turbulent flow than wire coils because they obstruct the flow, which results in a significant pressure reduction. When it comes to turbulent flow, the thermohydraulic performance of twisted tapes is lower to that of wire coils.
In this study, thermal-hydraulic performance of a confined slot jet impingement with Al2O3-water nanofluid has been numerically investigated over Reynolds number ranges of 100-1000. Two triangular ribs are mounted at a heated target wall; one rib located on the right side of the stagnation point and another one located on left side of the stagnation point. The governing momentum, continuity and energy equations in the body-fitted coordinates terms are solved using the finite volume method and determined iteratively based on SIMPLE algorithm. In this study, effects of Reynolds number, rib height and rib location on the thermal and flow characteristics have been displayed and discussed. Numerical results show an increase in the average Nusselt number and pressure drop when Reynolds number and rib height increases. In addition, the pressure drop and average Nusselt number increases with decrease the space between the stagnation point and rib. The maximum enhancement of the average Nusselt number is up to 39 % at Reynolds number of 1000, the rib height of 0.3, rib location of 2 and nanoparticles volume fraction of 4%. The best thermal-hydraulic performance of the impinging jet can be obtained when the rib height of 0.2 and rib location of 2 from the stagnation point with 4% nanoparticles volume fraction.