Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for high-strength-concrete

Article
Behaviour of Reinforced Polymer Modified High Strength Concrete Slabs under Low Velocity Impact

Abdulkader Ismail Al-Hadithi

Pages: 171-189

PDF Full Text
Abstract

This research investigates the impact resistace of reinforced high strength concrete slabs with steel meshes (BRC) modified by styrene butadiene rubber (SBR) with different weight ratios of polymer to cement as follows: 3%, 5% and 7%. Reference mix was produced for comparison of results. For all selected mixes, cubes (100×100×100mm) were made for compressive strength test at (365) days. In conducting low-velocity impact test, method of repeated falling mass was used: 1400gm steel ball falling freely from height of 2400mm on reinforced panels of (50×50×800 mm) reinforced with one layer of (BRC). The number of blows causing first crack and final perforation (failure) were calculated, according to the former results, the energy of each case was found. Results showed an improvement in compressive strength of polymer modified high strength concrete (PMHSC) over reference mix; the maximum increase being of it were (3.93%-11.96%) at age of (365) days. There is significant improvement in low-velocity impact resistance of all polymer modified mixes over reference mix. Results illustrated that polymer modified mix of (3%) give the its higher impact resistance than others, the increase of its impact resistance at failure over reference mix was (154.76%) while, for polymer modified mix (5%) it was (30.95%) and it was (14.28%) for polymer modified mix of (7%).

Article
Effect of Anchorage Length on the Shear Capacity of High Strength Concrete Deep Beams

Maytham Khalid Gatea a, Dr. David A.M.Jawad b

Pages: 47-56

PDF Full Text
Abstract

Ten simply supported deep beams with high strength concrete (C55 MPa) have been casted and subjected to a four-point loading test. Different parameters were examined for their influence on specimen behavior. These parameters were the shear span to overall depth ratio (a/h), the overall depth of deep beams (h), and additional anchorage length beyond the centerline of support (la). The experimental results show that the beam capacity decreases as the shear span to the overall depth ratio increases, and the overall depth and embedment length decrease. The major effect of anchorage length on the shear strength is studied. Different failure modes were observed which do not match strut-and-tie failure modes. The shear compression and anchorage failures were con-trolled in the high compressive concrete deep beams due to bottom steel yielding. Finally, the ex-perimental test results are compared with predictions of the strut-and-tie method according to the ACI 318-14 and a good agreement was found.

Article
Structural Behavior of Normal and High Strength Concrete Wall Panels Subjected to Axial Eccentric Uniformly Distributed Loading

Jasim M. AL-Khafaji

Pages: 152-170

PDF Full Text
Abstract

In most cases, the concrete wall panels are subjected to axial eccentric distributed loading; due to this type of loading, concrete wall panels behave and fail somehow. There are many parameters that affect the structural behavior of the concrete wall panels. This study presents experimental investigation the structural behavior of concrete wall panels subjected to axial eccentric distributed loading; also evaluates the effect of the parameters, slenderness ratio (H/t), aspect ratio (H/L) and concrete strength on the behavior of concrete wall panels. The experimental program includes testing fifteen concrete wall panels hinged at top and bottom with free sides, by applying the load axially with eccentricity equal to (t/6); these panels are divided into five groups, each group consists of three panels with slenderness ratio (H/t) equals to (20 , 25 , 30) for each panel, three groups of normal concrete strength with aspect ratio (H/L) equal to (1.0 , 1.5 . 2.0) for each group and the other two groups are of high strength concrete with aspect ratio (H/L) equal to 2.0 for both two groups. The deflections of concrete wall panels depend on the slenderness ratio (H/t), aspect ratio (H/L) and concrete strength. The failure mode of the concrete wall panels is greatly affected by the aspect ratio (H/L); the panels with low aspect ratio tend to fail by crushing, while panels with high aspect ratio tends to fail by buckling.

Article
Numerical Investigations of Bond-Slip Performance in Pull-Out High Strength Concrete Specimens Subjected to Elevated

Akram S. Mahmoud, Shamil K. Ahmed

Pages: 20-28

PDF Full Text
Abstract

The concrete members several blessings over steel beam, like high resistance to prominent tem-perature, higher resistance to fatigue and buckling, high resistance to thermal shock, fire re-sistance, robust resistance against, and explosion. However there are some disadvantages as a result of exploitation totally different materials to product it. The most downside of structural concrete member is its deprived the strength to tensile stresses.The bond mechanism between steel bars and concrete is thought to be influenced by multiple parameters, like the strength of the encompassing media, the prevalence of cacophonous cracks within the concrete and therefore the yield stress of the reinforcement. However, properties of concrete mass has significantly effect when it was subjected to elevated temperature.The objective of this paper presents the results that allocating with the bond behavior of the rein-forcement of steel bar systems below static pull-out loading tests subjected to elevated tempera-tures. This numerical technique relies on relative slip and therefore the stress of bond distribu-tions done the embedded length and size of the bar within the concrete cylinder specimens. The obtained results square measure given and commented with the elemental characteristics of ferroconcrete members. The comparison showed smart agreement with experimental results

Article
Strength and Behaviour of Fibrous High-Strength Concrete columns

Zaid Muhammad Kani Al-Azzawi

Pages: 123-137

PDF Full Text
Abstract

The behaviour of high-strength fiber reinforced concrete columns was observed with a testing program of 7 columns, loaded eccentrically. The theory was analyzed by modifying the stress block diagram of concrete. The experimental results show that using high-strength fiber reinforced concrete with fiber volume fraction of 1.0%, increased the column ultimate capacity up to 40% in addition to increasing its ductility and toughness, significantly. The proposed theoretical analysis gave a good estimation of experimental results.

1 - 5 of 5 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.