The aim of this paper is to study experimentally the effect of steel fibers content on the modulus of elasticity of High Performance concrete HPC in different curing age. The results showed that adding steel fibers to HPC led to a considerable improvement in static and dynamic modulus of elasticity where at 90 day water curing the percentages of increasing in static modulus of elasticity of High Performance Steel Fiber Concrete HPSFC relative to HPC were 8.2%, 9.98%, and 11.88% at 0.5%, 1%, and 1.5% steel fibers by total concrete volume, respectively. While, the improvement of dynamic modulus of elasticity of HPSFC relative to HPC at 28 day were 8.09%, 10.7%, and 11.07% % at 0.5 %, 1 %, and 1.5 % respectively.
Rising energy prices and growing environmental concerns are making solar electric systems more attractive to homeowners. A solar electric system reduces high energy costs and keeps your home up and running during power out-ages. The advantages to buying a solar electric system include: Saving a significant amount on your electric bill. Increasing your home’s appraisal value. Enjoying reliable, clean, free power for 25 to 30 years. Helping and assist to boost our economy by creating jobs and new solar companies. A solar electric system is typically made up of solar panels, an inverter, battery, charge controller, wiring, and support structure. The three most common types of solar electric systems are grid-connected, grid-connected with battery backup, and off-grid (stand-alone). This work presents design and analysis of high performance of home solar energy, that include: the orientation and pitch of the southernmost facing roof to maximize solar gain, the roof vents, chimneys, gables or other obstructions in order to sit to the north side of the planned array. Ensure that the roof structure is strong enough. Structural support into the roof to handle the weight of a rack-mounted system. The space for inverters and disconnects near the main service panel. Finally comparison between these systems with other sources of energy.
In this paper, a proposed model based on phase matrix rotation was suggested to improve the performance of Multicarrier-Code Division Multiple Access (MC-CDMA) lies in Fast Fourier Transform (FFT) algorithm under the Additive White Gaussian Noise (AWGN) and frequency selective fading channel. This model is used to reduce the effect of multipath fading. The results extracted by a computer simulation for a single user, then it compared with the original technique for MC-CDMA based on FFT for both systems. As a result, it can be seen from the proposed technique that a high performance improvement was obtained over the conventional MC-CDMA, where the Bit Error Rate (BER) is widely reduced under different channel characteristics for frequency selective fading and the AWGN channel
The antenna is a Modified Broadband Butterfly Antenna (MBBA). The technical parameters of such systems are heavily influenced by the qualities of the antenna feed devices. The aperture theory of antennas uses the representation of the radiation field of the antenna as a superposition of the fields of elementary sources, characterized by their type and amplitude-phase spatial distribution. The radiation field of an antenna of finite dimensions is a superposition of inhomogeneous spherical waves emitted by the antenna elements. This paper is primarily the study process, Radiation models were calculated using the model of the cavity plates, Simple Green model, and the strict commercial Electromagnetic Simulator. The modified active rectangular patches with the Gann diode were combined into arrays of E and H plane. Calculated and measured results for these two active arrays the beam scanning, the possibilities have been demonstrated for both arrays. The results of an electrodynamics numerical simulation were obtained. Broadband and multiband radio systems have already found widespread practical applications by utilizing basic antenna parameters and characteristics.
The extensive global competition between companies and the development of new industrial technologies have greatly contributed to the current competitive conditions Like industrial companies, customers demand high quality products, low prices and better performance. This fierce competition has led to concerns about improved product design. This development is based on GQFD. Model of this developed Water pump is employed by CAD solid model (version 7). In order to achieve competition and high quality and high performance in the Iraqi market. GQFD demonstrates the balance between product development and environmental protection. Used a water pump for a home air cooler as a case study. Data is collected and distributed using personal interview methods and questionnaire forms to indicate customer requirements. The data is then analyzed using Pareto chart and AHP to prioritize customer needs. These priorities are then placed in house of quality and matrix of relationships between customer requirements and technical characteristics is established. The product has been developed from electrical to mechanical, in addition to using accumulated, stored and recycled materials; it also saves 20% of energy, thereby combining energy reduction with the use of damaged materials and their re-entry into work. As a result, the cost of pump manufacturing will decrease
High performance thermal insulators industries is recognized as one of most significant industries worldwide. This, of course, due to its basic role in industries requiring elevated temperatures. Concerning this target, a former study was performed in production of a thermal insulator containing locally available kaolin taking into consideration the effect of ignition temperature and grain size on the general specifications of the insulator. The low alumina content in kaolin samples , as shown by analysis, has resulted in lowering both the softening and melting points. It is planned in this research to study the effect of soaking time and added alumina on improving physical, thermal and mechanical properties of kaolin sample. Certainly, better properties of sample will result in better performance towards thermal insulation and to be more effective in resisting elevated temperature without affecting other properties.