Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for film-cooling

Article
Enhancement of Adiabatic Film Cooling Effectiveness by Using Conical Shape Hole

Assim. H. Yoosif, nan nan, Kutaeba J. M. AL-Khishali, nan nan, Falah F. Hatem

Pages: 465-478

PDF Full Text
Abstract

Film cooling is one of the methods used to protect the surfaces exposed to hightemperature flows, such as those exist in gas turbines. It involves the injection of coolant fluid (at a lower temperature than that of the main flow) to cover the surface to be protected. This injection is through holes that can have various shapes; simple shapes, such as those with straight cylindrical or shaped holes (included many holes geometry, like conical holes). The computational results show that immediately downstream of the hole exit, a horseshoe vortex structure consisting of a pair of counter-rotating vortices is generated. This vortex generation affected the distribution of film coolant over the surface being protected. The fluid dynamics of these vortices are dependent upon the shape of the film cooling hole, and blowing ratio, therefore the film coolant coverage which determines the film cooling effectiveness distribution and also has an effect on the heat transfer coefficient distribution. Differences in horseshoe vortex structures and in resultant effectiveness distributions are shown for cylindrical and conical hole cases for blowing ratios of 0.5 and 1. The computational film cooling effectiveness values obtained are compared with the existing experimental results. The conical hole provides greater centerline film cooling effectiveness immediately at the hole exit, and better lateral film coolant coverage away of the hole exit. The conical jet hole enhanced the average streamwise adiabatic film cooling effectiveness by 11.11% and 123.2% at BR= 0.5 and 1.0, respectively, while in the averaged lateral adiabatic in the spanwise direction, the film cooling effectiveness enhanced by 61.75% and 192.6% at BR= 0.5 and 1.0, respectively

Article
REVIEW ON COOLING METHOD OF GAS TURBINE POWER PLANT

hisham saed, muna kassim, Raid alwan

Pages: 40-49

PDF Full Text
Abstract

In order to increase output power and thermal efficiency, the temperature going into a gas turbine is much higher than the point at which the material would melt. In order to protect the airfoil of a gas turbine from hot gas and, as a result, extend the blade's life, new internal and film cooling arrangements must be developed immediately. When the incoming air is heated, the gas turbine's output rises proportionately as well. The power output of a gas turbine is determined by the amount of mass flowing through it. Because of this, electricity generation decreases on warm days due to a decrease in air density. It takes a 1% rise in air temperature to reduce power production by 1%. The purpose of this research is to discuss current strategies for cooling incoming air to gas turbines. Mechanical chillers, evaporative coolers, and fogging methods have all been examined. This study focuses primarily on the fogging inlet air cooling system. There are many ways to cool the air going into the engine, but the high-pressure intake fogging method has become more popular over the past ten years because it costs less and makes a big difference in power.

1 - 2 of 2 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.