In this paper, a proposed structure was suggested by replacing the blocks of the fast Haar Wavelet Transform (WT) with a two dimensional wavelet transform at the transmitter and the receiver sides in the Orthogonal Frequency Division Multiplexing (OFDM) model. This can be done by converting a 1-Dimensional vector into a 2-Dimensional matrix and process it by 2-Dimensional Wavelet Transform (2D-WT). The proposed method was applied on the OFDM in Additive White Gaussian Noise (AWGN) and flat fading channel. It was concluded that the proposed method gives much better Bit Error Rate (BER) performance than the conventional OFDM model based on WT. The simulation results showed that the proposd structure outperforms the other scheme in the carried tests at the AWGN and flat fading channels.
In this paper, a proposed model based on phase matrix rotation was suggested to improve the performance of Multicarrier-Code Division Multiple Access (MC-CDMA) lies in Fast Fourier Transform (FFT) algorithm under the Additive White Gaussian Noise (AWGN) and frequency selective fading channel. This model is used to reduce the effect of multipath fading. The results extracted by a computer simulation for a single user, then it compared with the original technique for MC-CDMA based on FFT for both systems. As a result, it can be seen from the proposed technique that a high performance improvement was obtained over the conventional MC-CDMA, where the Bit Error Rate (BER) is widely reduced under different channel characteristics for frequency selective fading and the AWGN channel
WMAN (wireless metropolitan area network) technology is based on the IEEE 802.16 air interface standard suite, which provides the wireless technology for fixed and nomadic data access. WMAN employs orthogonal frequency division multiplexing (OFDM), and supports adaptive modulation and coding depending on the channel conditions. The objective of this paper is to study the performance of the IEEE 802.16d WMAN physical layer under Nakagami model as a Multi-path and frequency-selective fading channel beside the additive white Gaussian noise (AWGN) and Doppler. Finally, we compared it with the Rayleigh fading model. The transmission bit rate, Probability of Error ( ) and estimated SNR have been compared under single/multi path propagation conditions.