Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for double-pipe-heat-exchanger

Article
Numerical Investigation of Hydraulic-Thermal Performance for a Double-Pipe Heat Exchanger Equipped with 45°-Helical Ribs

Ahmed K. Mashan, Waleed M. Abed, Mohammed A. Ahmed

Pages: 193-202

PDF Full Text
Abstract

In this paper, the hydraulic-thermal performance of a double-pipe heat exchanger equipped with 45°-helical ribs is numerically studied. The ribbed double-pipe heat exchanger is modelled using three heights (H = 0, 2.5, 3.75, 5 mm) of 45°-helical ribs. Two numbers (4-ribs and 8-ribs) of 45°-helical ribs are attached on the outer surface of the inner pipe of the counter-flow double-pipe heat exchanger and compared with a smooth double-pipe heat exchanger. Three-Dimensional computational fluid dynamics (CFD) model for a laminar forced annular flow is performed in order to study the characteristics of pressure drop and convective heat transfer. In addition, the influence of rib geometries and hydraulic flow behaviour on the thermal performance is system-atically considered in the evaluations. The annular cold flow is investigated with the range of Reynolds numbers from 100 to 1000, with three heights of ribs at the same width (W = 2 mm) and inclined angles of (θ = 45°).The results illustrate that the average Nusselt number and pressure drop increase with an in-creasing number of ribs, the height of ribs and Reynold number, while the friction factor decreas-es with increasing Reynolds numbers. The percentage of averaged Nusselt number enhancement for three rib heights (H = 2.5, 3.75 and 5 mm) at 4-ribs is (34%, 65% and 71%), respectively, While for 8-ribs the enhancement percentage is (48%, 87% and 133%) as compared with the smooth double-pipe heat exchanger at Re = 100. The best performance evaluation criteria of (PEC) at (8-ribs, and H = 5 mm) is 2.8 at Re = 750. The attached 45-helical ribs in the annulus path can generate kind of secondary flows, which enhance the fluid mixing operation between the hot surface of the annular gap and the cold fluid in the mid of the annulus, which lead to a high-temperature distribution. Increasing the height of 45°-helical ribs lead to an increase in the sur-face area subjecting to convective heat transfer.

Article
Performance of a double-pipe heat exchanger with different met-al foam arrangements

Thaer H. Farhan, Obaid T. Fadhil, Hamdi E. Ahmed

Pages: 100-112

PDF Full Text
Abstract

This paper contributes to the field of improving the performance of heat exchangers using metal foam (MF) full-filled and partially/periodically-filled within the gap between the two pipes. The effect of configuration and arrangement of copper MF (15PPI and porosity of 0.95) installed on the outer surface of the inner pipe of a counter-flow double-pipe heat exchanger on the thermal and hydraulic performance was studied experimentally. The test section consisted of concentric two pipes; the inner pipe which was made of copper while the outer pipe was a Polyvinyl chlo-ride. Air was used as a working fluid in both hot and cold sides. A wide cold air flow rate range was covered from 3 to 36 m3/h which corresponds to Reynolds number (Re) range from 2811 to 31,335. The hot air flow rate was kept constant at 3m3/h. The temperature difference (ΔT) be-tween the inlet hot air and inlet cold air was adopted to be (20°C, 30°C, 40°C, and 50°C). The re-sults revealed that the higher Nusselt number (Nu) was at ΔT= 50°C and the thermal performance of the heat exchanger with the MF for all the arrangements was greater than the smooth heat exchanger. The highest and lowest friction factor was 1.033 and 0.0833 for the case 1 and 8, re-spectively, and the optimal performance evaluation criteria (PEC) was 1.62 for case 7 at Re = 2800. The Nu would be increased with a moderate increase in the friction factor by optimizing the arrangement of the MF. The two essential parameters that played an important role for in-creasing the PEC were the MF diameter and the MF arrangement along the axial length of the cold air stream.

Article
Numerical Investigation on the Thermal Performance of Double Pipe Heat Exchanger Using Different Shapes of Fins

Asaad K. Ali, Wissam H. Khalil

Pages: 326-348

PDF Full Text
Abstract

In this study, a numerical investigation on the thermo-hydraulic performance of thedouble pipe heat exchanger into heat transfer by different shapes of fins on the outersurface for the inner tube as extended surfaces. The inner and outer diameters of theinner pipe were (16.05 mm), (19.05 mm) respectively, and (34.1 mm), (38.1 mm) for theouter tube. The length of the heat exchanger was (1000 mm). Hot and cold water wereused as the working fluid, where the hot water flows inside of the inner one in counterflow with the cold water which flows in the annulus. The inlet temperature for the hotwater is (75 OC) while it is (30 OC) for the cold. The hot fluid flows at constant ratewhich is (0.1kg/s) while the cold is varied from (0.1 kg/s to 0.2 kg/s).The study wasperform using the known commercial CFD package (ANSYS – FLUNET 15) .Theresults shows that both (rectangular and triangular) fins enhances the heat transfercoefficient compare with the conventional plain tube .The rectangular fins presents anheat transfer enhancement ratio of (61% to 74%). Using of extended surfaces present agood result in saving energy by enhancing the performance of the double pipe heatexchangers used in petroleum industry.

1 - 3 of 3 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.