These systems show great promise by converting waste heat from photovoltaic modules into additional electrical power. The study analyzes the performance and efficiency of the hybrid PV-TEG systems under varying conditions, such as different solar concentration ratios, cooling methods, and materials. While these innovations promise to improve system efficiency, the review also identifies several challenges, including increased thermal resistance, higher system costs, and the minimal temperature difference across the TEG, which significantly limits its performance. This limitation, where the temperature differential is often too small to be effectively harnessed, reduces the TEG's overall efficiency and hinders the integrated system's potential gains. The review underscores the need for urgent and extensive research to develop optimized design configurations, durable mathematical models, and further experimental validation to ensure the practical viability of these systems under diverse environmental conditions. Despite these challenges, the potential of PV-TEG systems to revolutionize solar energy technologies is undeniable.PV-TEG performance is intricately linked to environmental conditions: higher solar radiation boosts efficiency, but increased ambient temperatures reduce it. TEGs often hinder PV cooling, yielding minimal efficiency gains. Non-uniform heat and low-temperature differences across TEGs further decrease performance. While hybrids can improve power conversion, high costs limit feasibility. However, with strategies such as enhancing solar concentration, using effective cooling methods like water or nanofluids, and advanced materials like phase change materials, the efficiency and reliability of these systems can be significantly improved
Switched reluctance motor (SRM) is an electric motor works based on the reluctance torque produced due to the variation of the rotor pole position with respect to stator poles. This paper adopts a thermal analysis on a 4-phase, 8/6 pole, 550W, SRM. Lumped parameters thermal network method(LPTN) is used in this analysis based on a combination of RMXprt/Motor-CAD software, in two- dimensional(2D), steady-state, with different cooling methods, and with different loading conditions. Motor losses like core losses, copper losses, and mechanical losses are regarded as the heat sources in SRM which are calculated by RMXprt software. The thermal analysis achieved by Motor-CAD includes displaying the temperature distribution on different motor parts like stator winding, stator poles, stator yoke, rotor poles, rotor yoke, shaft, covers, and housing. The analysis results showed the increasing temperature distribution on different motor parts with increasing motor loading conditions. Also, this temperature distribution is recorded using three different cooling methods. The comprehensive thermal analysis applied in this work will assist the motor designer in choosing a better motor thermal design without needing to produce and test costly prototype motors.
Photovoltaic cells are one of the renewable energy sources that have been employed to produce electrical energy from solar radiation falling on them, but not all incident radiate will produce electrical energy, part of those radiate cause the panel temperature to rise, reducing its efficiency and its operational life, unless an attempt is made to employ one of the traditional cooling methods or innovating other methods to cooling it to reduce this effect, which it represented in the active and passive cooling method. In fact, it is difficult to compare the active method with the passive method, as each method has its Advantages and disadvantages that may suit one region without another. But in general, there are basic factors through which at least a comparison between the two methods can be made. Relatively the passive method is less expensive, in addition to no need for additional parts such as pumps and controllers, there is no energy consumption because it does not require power. But it is less effective and efficient than the active method, while the active method has the ability to disperse the heat higher than the passive method. However, it necessitates the use of electricity and is frequently costlier than the passive strategy. In this review, the most common active and passive cases were reviewed, and the pros and cons of each case are summarized in discussion due to the difficulty to list them. The review recommends that future studies should focus on active water cooling and heat-sink, both of which are viable cooling strategies.
Film cooling is one of the methods used to protect the surfaces exposed to hightemperature flows, such as those exist in gas turbines. It involves the injection of coolant fluid (at a lower temperature than that of the main flow) to cover the surface to be protected. This injection is through holes that can have various shapes; simple shapes, such as those with straight cylindrical or shaped holes (included many holes geometry, like conical holes). The computational results show that immediately downstream of the hole exit, a horseshoe vortex structure consisting of a pair of counter-rotating vortices is generated. This vortex generation affected the distribution of film coolant over the surface being protected. The fluid dynamics of these vortices are dependent upon the shape of the film cooling hole, and blowing ratio, therefore the film coolant coverage which determines the film cooling effectiveness distribution and also has an effect on the heat transfer coefficient distribution. Differences in horseshoe vortex structures and in resultant effectiveness distributions are shown for cylindrical and conical hole cases for blowing ratios of 0.5 and 1. The computational film cooling effectiveness values obtained are compared with the existing experimental results. The conical hole provides greater centerline film cooling effectiveness immediately at the hole exit, and better lateral film coolant coverage away of the hole exit. The conical jet hole enhanced the average streamwise adiabatic film cooling effectiveness by 11.11% and 123.2% at BR= 0.5 and 1.0, respectively, while in the averaged lateral adiabatic in the spanwise direction, the film cooling effectiveness enhanced by 61.75% and 192.6% at BR= 0.5 and 1.0, respectively