Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for composite

Article
Preparation a Composite Material (UP/Cann F) with Evaluation Its Toughness Under the Influence of Temperature and Humidity.

Nasser A.M. Habib

Pages: 198-208

PDF Full Text
Abstract

In this research we have prepared a composite material by using Vegetative Cellulose Fibers of Cannabis (Cann F) to reinforced a matrix of Unsaturated Polyester (UP) resin. This kind of fibers is distinguished by good properties such as high tensile strength, low elongation, thermal resistance and low cost. The impact strength was tested by using Charpy method for three materials (UP resin), composite (UP / Cann F) and composite (UP/Glass F). The results indicated that the fracture energy (Uc) decreased as the notch depth (a) increased on the sample from (0.7 mm) up to (4.9 mm). However, the fracture energy increased as the temperature of the composite increased for different temperatures of (0, 35, 50 and 75) oC. It was noticed that the Material toughness (Gc) has been improved significantly, where in case of the composite (UP /Cann F), the improvement of (Gc) was from (2.45 kJ/m2 ) to (14.5 kJ/m2 ) and it was (17 kJ/m2 ) for composite (UP/GF) has been measured at (35) oC. When those composite materials (UP/Cann F) exposed to humidity for a period of (72 hrs) without immersion, their properties did not change, hence the effects are not of chemical but of physical nature. The conclusion, the difference between the toughness of the material (Gc) for the reinforced composites by Cannabis and E-glass fibers for all temperatures is not large, so this encourage the development of Cannabis fiber reinforced composites in the future to abundance, and low cost for industrial investment

Article
STUDYING THE EFFECT OF CUTOUTS ON THE COMPOSITE LAMINATE PLATES

Arz Y. R, nan nan

Pages: 69-77

PDF Full Text
Abstract

The aim of current work is to investigate the tensioned composite plates with two types of cutouts. Many industrial applications use composite matrix with reinforcement fiber to obtain better properties. The objective of this work is divided into two parts, first the experimental work covers the measuring of the normal strain (εx) at the edges of (circular & square) holes that are perpendicular to the direction of the applied loads with different number of layers and types of cutouts of composite materials by using strain gages technique under constant tensile loads to compare with the numerical results. The second part is numerical work, which involves studying the static analysis of symmetric square plates with different types of cutout (circular – square). In static analysis, the effect of the following design parameters on the maximum stress (σx), strain (εx) and deflection (Ux) is studied. This part of investigation was achieved by using the software finite element package (ANSYS 5.4).

Article
ANALYSIS OF MULTI-LAYER COMPOSITE SIMPLY SUPPORTED BEAM UNDER BLAST LOADING

Ahmed T. Al, Khaleel I. Aziz

Pages: 98-117

PDF Full Text
Abstract

In this study an attempt is made to derive governing equations satisfying equilibrium and compatibility, for multi-layer composite simply supported beam under blast loading , for linear material and shear connector behavior in which the slip (horizontal displacement) and uplift force (vertical displacement) are taken into consideration. The analysis is based on an approach presented by Roberts, which takes into consideration horizontal and vertical displacements in interfaces. The model consists of a simply supported beam with three layers having a cross-sectional area ,different dimensions and material properties. The analysis led to a set of six differential equations containing derivatives of the fourth and third order. The blast loading was considered as a function of time. Explosions have different effects including blast, penetrations and fragmentation. The blast is the main effect which hits the structure in short duration. Multi –layer composite construction is the best type of constructions to resist the blast loading ; according to this , multi-layer composite construction is used for air-craft and marine industries. Analysis of composite beam under blast load , taking in consideration vertical and horizontal displacements, leads to six differential equations , the load is taken as a function of time.

Article
STRUCTURAL BEHAVIOR OF COMPOSITE SLABS SUBJECTED TO IMPACT LOADING

Khalil Ibrahim Aziz, Hashim Mohammed suwaid

Pages: 176-184

PDF Full Text
Abstract

This paper presents the experimental results of composite slabs under static and impact loading. Total of six specimens classified one specimen test under static loading and the remaining five were tests under impact dynamic loading with different parameters as type of connections and degree of interaction of composite slab. Low - velocity impact test was adopted by select the falling mass (4 kg) made from steel material and formed as ball shape without nose. The ball dropped freely from height of (2.4 m) and strikes the top of composite slab. The designed dimensions of specimens is (500×500×60 mm) as reinforced concrete slab that reinforced by mesh of (RBC) and the steel plate is (3 mm) in thickness. Deflection due to first crack is recorded, number of blows caused first crack and failure were counted. The test results showed that the welded stud connectors gives high strength capacity and resistance under static and impact dynamic loadings than other than type of connections, also, full interaction as degree of interaction is better than others

Article
Transient Analysis of Composite Plates with Different Types of Cutout

Ahmed N.Uwayed, Riyah N.Kiter, Muhsin J.Jweeg

Pages: 1-21

PDF Full Text
Abstract

Composite laminate plates, fabricated by bonding fiber–reinforced layers, were dynamically analyzed under different combinations of number of layers, type of cutout, hole dimensions, angle of lamination and type of dynamic loading . This work was achieved by the well–known engineering software (ANSYS). The toughness of composite plates was evaluated in terms of the normal stress in the direction of loading at the periphery of the cutout. The toughness was found to increase by increasing the number of layers, by setting the lamination angle at around 40o,by selecting hole dimensions to width of plate ratio of around 0.4 and by employing square cutouts or avoiding triangular cutouts. Also, composite plates were found to be more strain-rate-sensitive in ramp loading, with least number of layers and with triangular type of cutout.

Article
BEHAVIOR OF MULTI-LAYER COMPOSITE CONTINUOUS BEAMS WITH PARTIAL INTERACTION

Khalel I. Aziz

Pages: 51-68

PDF Full Text
Abstract

In this study an attempt is made to develop a method of analysis dealing with a multi-layer composite continuous beam , for linear material and shear connector behavior in which the slip (horizontal displacement) and uplift force (vertical displacement) are taken into consideration. The cross-sectional area for the beam consists of three layers varying in thickness and shear stiffness. The analysis is based on a approach presented by Roberts[1], basically for two layer simply supported beam, under uniform and point loads , which takes into consideration horizontal and vertical displacement in interfaces. The analysis led to a set of eight differential equations containing derivatives of the fourth and third order. A program based on the present analysis is built using finite difference method using boundary conditions. A comparison between the present analytical solution and previous studies shows close agreement. Continuous composite beams are very important element in construction of high rise buildings , multi-story frames and bridges, due to great advantages that can be obtained by using this sort of structural elements, such as reducing the beam moments, suitable reduction in deflections. The model deals with continuous beam consisting from three layers as a cross-sectional area with inter-layer slip. The cross-sectional area consist of composite material including intermediate layer from concrete and an upper and lower material with high strength in tension and compression ( i.e. steel plates or steel beams )

Article
Effect of Water on Bending Strength for Epoxy Reinforced with Particles by Using Cantilever Bending Test

Mohammed Ghazi Hammed

Pages: 39-51

PDF Full Text
Abstract

This research includes the study of bending strength for the polymer composite materials. The first of all, the hand lay-up technology is used to prepare slates of the composite materials, epoxy resin was used as matrix for the reinforced materials that consist of artificial powders (aluminum oxide and copper) for reinforcing. The slates made of composite materials for both volume fractions 20% and 40% from the reinforced materials; all these slates were cut into samples with measurement (10x 100 mm) in order to carry out the bending strength test for samples by using cantilever bending test for both volume fractions 20% and 40%. The results and laboratory examinations for these samples shows increase in the bending strength and modulus of elasticity for composite materials when the volume fraction increase from 20% to 40% for reinforced materials, and these values decrease when the samples were immersion in distilled water for (30) days.

Article
Prediction of First Ply Failure of Composite Pressure Vessels Under Internal Pressure: A review

Naseer Farhood, Abdullah Singal

Pages: 76-84

PDF Full Text
Abstract

Composite pressure vessels (i.e. types III and IV) are widely used for compressed natural gas (CNG) vehicles, as storage cylinders to reduce the weight while maintaining high mechanical properties. These vessels can achieve 70-80% of weight saving, as compared to steel vessels (type I). So, prediction of first ply failure and burst pressure of these vessels is of great concern. Thus, this paper involved a review of literature regarding the first ply failure and burst pressure of composite pressure vessels (types III and IV). The review included the researches related to the simulation, mathematical modeling, and experimental analysis. The study focused on simulation-related research more than others due to the complexities of mathematical modeling of such problems in addition to the high cost of experimental tests. The results indicated that the stacking sequence of layers, vessel thickness and the type of selected composites were the main factors that mainly affect the vessel burst pressure performance. Accordingly, the optimization in the vessel structure (composite fabric architecture) parameters plays an important role in the performance of burst pressure. This in turn will lead to a high vessel durability, longer life-time and better prediction of burst pressure. Furthermore, the study showed that the prediction of first ply failure is more important than burst pressure knowledge of pressure vessels because it gives an initial prediction of vessel failure before the final failure occurrence. This in turn, may prevent the catastrophic damage of vessel.

Article
Torsional Capacity of Composite Reinforced Concrete Beams with Stirrup Connectors

Dolfocar Ali Usamah Witwit, Nabeel Abdulrazzaq Jasim

Pages: 177-192

PDF Full Text
Abstract

New composite reinforced concrete beams, in which reinforced concrete component is connected to steel T-section, are proposed. The shear connection between the two components, the reinforced concrete and the T-section, is provided by the stirrups that are required for the reinforced concrete component to resist the applied shear. Experimental tests in addition to numerical analysis were conducted to determine the behaviour and strength of such beams under pure torsion. Full scale one conventional reinforced concrete beam, T1, and two composite reinforced concrete ones, T2 and T3, were tested. The degree of shear connection between the two components of beams T2 and T3 was changed by varying the number of stirrups which are used as shear connectors. The experimental results revealed approximately same torsional stiffness for the three beams at the uncracked concrete stage. The torsional strength of the composite reinforced concrete beams was greater than that of ordinary reinforced concrete one by 11% and 27% for beams T2 and T3, respectively. Three-dimensional finite element analysis was conducted using program ABAQUS. To model the shear connection in composite reinforced concrete beam, the stirrups were connected to the web of the steel T-section by springs at the location of the stirrups. Good agreement is obtained between the results of the experimental tests and the finite element analysis. The ratios of experimental results to those of finite element analysis for torsional strength are approximately one. Under the pure torsion loading the degree of shear connection is found to have no effect on torsional capacity of beams.

Article
Study of Multi-Cracked Cantilever Composite Beams Subjected to External Moving Load

Nazhad Ahmad Husseina, Sara Mohamad Ahmadb, Dilshad A. Mohammed

Pages: 27-34

PDF Full Text
Abstract

The behaviour of multiple cracked cantilever composite beams is studied when subjected to moving periodic force. In this investigation a new model of multiple cracked composite beams under periodic moving load is solved. Three cracks are considered at different position of the beam for numerical solution. The results from experimental work compared to numerical solution. The multiple cracks are identified easily from the deflection graphs at different force speed. Influences of crack depth at different load speed are investigated

Article
Effect of Using Palm Wastes as Additive to Unsaturated Polyester on the Thermal and Acoustic Isolation Properties of a Composite Materials

F. Mohammed, D. Shaker, N. Jalal, R. Abd, E. Ali Akber

Pages: 202-209

PDF Full Text
Abstract

The thermal and acoustic isolation properties of unsaturated polyester composites reinforced by palm waste filler have been experimentally investigated. The composites have been prepared using hand lay-up technique with filler weight fraction of (0%, 3%, 5% and 7%). Three types of palm waste that (Date seed, old leaf bases and petiole) were ground and sieved separately to produce the filler with particle size ≤ 400µm. Thermal conductivity, thermal diffusivity, and specific heat capacity were examined using Hot Disk thermal analyses. The acoustic isolation property examined in a sound-insulated box. The experimental results show that the thermal conductivity and thermal diffusivity of the composite specimens reinforced by seed or old leaf bases filler increased with increasing the fillers weight fraction. While increasing the petiole filler decreased the thermal conductivity and thermal diffusivity by 19% and 40% respectively at 5% weight fraction as compared with a pure unsaturated polyester material. So, the composite reinforced with petiole filler has improved the thermal insulation properties. The composites samples reinforced with palm waste show higher sound absorption in compared to the pure unsaturated polyester material. The sound absorption properties of composite reinforced with 7% old leaf bases filler improved by 15% and 23% at low and high frequency respectively rather than of pure unsaturated polyester material.

Article
Stress Analysis of Composite Plates with Different Types of Cutouts

Ahmed N.E, Riyah N.K

Pages: 11-29

PDF Full Text
Abstract

This research presents an experimental and theoretical investigation of the effect of cutouts on the stress and strain of composite laminate plates subjected to static loads. The experimental program covers measurement of the normal strain at the edges of circular and square holes with different number of layers and types of composite materials by using strain gages technique under constant tensile loads. A numerical investigation has been achieved by using the software package (ANSYS), involving static analysis of symmetric square plates with different types of cutouts. The numerical results include the parametric effects of lamination angle, hole dimensions, types of hole and the number of layers of a symmetric square plate. The experimental results show good agreement compared with numerical results. It is found that increasing the number of layers reduces the value of normal strain at the edges of circular and square holes of a symmetric plate and the maximum value of stress occurs at a lamination angle of (30o) and the maximum value of strain occurs at a lamination angle of (50o) for the symmetric square plates subjected to uni-axial applied load. The hole dimensions to width of plates ratio is found to increase the maximum value of stress and strain of a symmetric square plate subjected to uniaxial applied load. Moreover, the value of maximum stress increases with the order of type of circular, square, triangular and hexagonal cutout, whereas the value of maximum strain increases with the order of type of circular, square, hexagonal and triangular cutout.

Article
Free Vibration Analysis of Clamped Laminated Composite Plates with Centeral Crack

Khaldoon F. Brethee

Pages: 108-115

PDF Full Text
Abstract

A finite element method for free vibration analysis of generally laminated composite plateswith central crack and clamped edges have been studied using ANSYS 5.4 program. The fiber-reinforced composite materials are ideal for structural applications where highstrength-to-weight and stiffness-to-weight ratios are required, where structures must safelywork during its service life. But damages initiate a breakdown period on the structures.Cracks are among the most encountered damage types in the structures. The non-dimensionalfundamental frequency of vibration decreases with presence of cracks because, therigidity of cracked plate decreases. The natural frequency of plates depends on size andshape of the cracks, the effect of number of layers is found to be insignificant beyond fourlayers and the change of fiber orientation increasing the fundamental frequency of vibration.The results obtained have been compared with the available published literature with goodagreement results

Article
Dynamic Response of a Cracked Composite Beam subjected to moving Load

Nazhad Ahmad Hussein

Pages: 393-398

PDF Full Text
Abstract

The forced deflections of simply supported cracked composite beams are investigated when subjectedto moving dynamic load. The crack is modeled as rotational spring and used in the formulationof the composite beam with a moving load in sinusoid wave. The numerical solution issatisfactory compared to the experimental results. The effects of crack depth and crack positionsat different load speed are studied. The results show that the forced deflection increased withincreasing the speed ratio and crack depth.

Article
TAIL PLANE DESIGN FOR SATISFYING LONGITUDINAL HANDLING QUALITIES

Yahya A. Faraj, Farag M. Mohammed

Pages: 1-14

PDF Full Text
Abstract

The Cooper-Harper rating of aircraft handling qualities has been adopted as a standard for measuring the performance of aircraft. In the present work, the tail plane design for satisfying longitudinal handling qualities has been investigated with different tail design for two flight conditions based on the Shomber and Gertsen method. Tail plane design is considered as the tail/wing area ratio. Parameters most affecting on the aircraft stability derivative is the tail/wing area ratio. The longitudinal handling qualities criteria were introduced in the mathematical contributions of stability derivative. This design technique has been applied to the Paris Jet; MS 760 Morane-Sualnier aircraft. The results show that when the tail/wing area ratio increases the aircraft stability derivative increases, the damping ratio and the natural frequency increases and the aircraft stability is improved. Three regions of flight conditions had been presented which are satisfactory, acceptable and unacceptable. The optimum tail/wing area ratio satisfying the longitudinal handling qualities and stability is (0.025KeywordsLongitudinal Handling---Stability---Tail Design

Article
Characterizations of Hybrid Composites of Linen /Glass Fibers for Automotive and Transportation Applications

M.F. Alkbir, Suhad Salman, Z. Lemanc, Fatihhi Januddi

Pages: 114-121

PDF Full Text
Abstract

Recently, the sustainability issue has become crucial to operation, which motivates researchers to search for naturally generated, sustainable materials, especially in automotive applications outside of reduced prices and enhanced performance. Glass-linen/Polyvinyl Butyral hybrid composites' mechanical characteristics were examined in relation to the effect of linen fiber loading. The composite and hybrid composite samples of linen/glass fiber reinforced PVB film were created using a hot press with various layering patterns. The results were high impact values with increased both tensile and flexural strength values. Compared to other hybrid composites, the mechanical behaviors of the H1 (Glass / Linen) hybrid have a greater tensile strength measuring 401.30 MPa, while, H2 (Glass / Linen/ Glass) hybrids are found to have the highest flexural strength, measuring 160.80 MPa. An optical and scanning electron microscope morphological analysis on linen hybrid composites revealed good results. This indicated decreased rates of delamination between the fibers and matrix layers. The loading of the fibers was shown to have varying effects on the composite's mechanical behaviors.  The linen/glass composites also demonstrated strong interfacial adhesion, which enabled the PVB-phenolic resin to penetrate the fiber bundles and produce a matrix with the good interlocking of the fibers

Article
Effect of Layers Arrangement on the response of Sandwich Composite Cantilever Plate

Ahmed N.E, Arz Y.R, Riyah N.K

Pages: 82-95

PDF Full Text
Abstract

A numerical study regarding stress, strain, and deflection of a composite plate is presented. The plate, consisting of three layers of Carbon-, Boron-, and Graphite-Epoxy, was fixed at one end and loaded at the other end in a conventional cantilever configuration. Six arrangements were examined and the spatial distribution of stress, strain, and deflection of the upper surface were calculated. Generally, it was found that the order, by which the three layers are arranged, has a great effect on the response of the plate and the maximum stiffness (in terms of deflection) is achieved when using Epoxy with Graphite-Carbon-Boron as the top-central-bottom layers of the plate.

Article
Transient Interlaminar Thermal Stress Analysis of angle-ply Silicon/Lithium Aluminosilicate Composite plate

Hammed Mohammad Hassan

Pages: 47-57

PDF Full Text
Abstract

This paper deals with the transient interlaminar thermal stress analysis of angle-ply SIC/LAS composite cantilever plate due to sudden change in the thermal boundary conditions .The transient interlaminar thermal stresses are computed by using the finite element method for different intervals of time. The effects of the fiber volume fraction, fiber orientation angle and stacking sequence are studied. The results are compared with previous studies with a good agreement

Article
On the vibration and stability investigations of orthotropic FGMs plate and cylindrical shell: A review

Ahmed Ali, Hamad Hasan, Munir Almabrouk

Pages: 54-68

PDF Full Text
Abstract

Since FGM orthotropic structures have such striking qualities as high strength, exceptional stiffness, stiffness-to-weight ratio, reduced cost, and high strength-to-weight ratio, they are employed extensively in the mechanical, aerospace, and civil engineering sectors. Thick plates and shells have more noticeable shear deformation effects. Therefore, in recent years, there has been a lot of interest in the vibration and buckling investigation of FGMs orthotropic plates and shells. Moreover, researchers have developed a variety of approaches and procedures for the examination of orthotropic FGM plates and shells. The majority of the literature review in this publication is focused on orthotropic FGMs plate and shell buckling and linear and nonlinear free vibration. In engineering practices, it is customary to use material-oriented or orthotropic materials in several domains to optimize the structures and maximize material properties, which is especially crucial for FG constructions. Solutions for the orthotropic FGM structure are studied analytically and numerically with different plate and shell theories.

Article
Effect of Strain Rate on Tensile Fracture Behaviour of Viscoelastic Matrix (EPOXY) and Fiber Reinforced Composites

Saad Mohamed Jaleel, Arz Yahya Rzayeg, Mashaan Ibrahem Hassan

Pages: 104-115

PDF Full Text
Abstract

Viscoelasticity, as its name implies, is a generalization of elasticity and viscosity. Many industrial applications use viscoelastic matrix with reinforcement fiber to obtained better properties. Tensile testing of matrix and one types of fabric polyamide composites was performed at various loading rates ranging from (8.16* 10-5 to 11.66 * 10-5 m/sec) using a servohydraulic testing apparatus. The kind of reinforcement, random glass fiber (RGF), and the kind of matrix, epoxy (E) are used shown that the linear strain (،ـ 0.5) for the three parameter model gives a good agreement with experimental results. The results showed that both tensile strength and failure strain of these matrices and composites tend to decrease with increase of strain rate. The experimental results were comparison with numerical results by using ANSYS 5.4 program for simple study case has shown some agreement. Fracture regions of the tested specimens were also observed to study micro mechanisms of tensile failure.

Article
Effect of Some Environmental Factors on the Properties of Polyurethane/Silica Composites

Hazim falih

Pages: 30-35

PDF Full Text
Abstract

Silica particles are directly introduced into polyurethane resin with different grain size and different volume fractions to obtain a new composite. Hardness, impact strength (charpy) and compression properties were studied with the conditions mentioned; Acid solutions and UV- radiation were the main environments studied on the samples prepared. The results showed that the acid affected the properties more than UV- radiation

Article
Effect of water on impact strength for unsaturated polyester composites reinforced with E-glass fibers

Mohammed Ghazi Hammed

Pages: 279-294

PDF Full Text
Abstract

The present research aimed to study the effect of distilled water on impact strength for unsaturated polyester composites reinforced with E-glass fibers with volume fraction 35%, all samples were prepared by using hand lay up technique. Unsaturated polyester resin was used as matrix for the reinforced materials that consist of artificial glass fibers (woven roving) with directional (0,90) and chopped glass fibers with the random direction. The samples were cutting with measurement (60 x 6) mm and the sample thickness dependent on the number of layers of glass fibers. The impact tests are carried out on samples under the influence of normal conditions (laboratory temperature). The results and examinations for these samples shows acceptable improvement in impact strengths of the matrix was observed after addition of glass fibers, to explain the effect of water on impact properties, the samples immersion in water for (50) days. The results show that as the exposure time increased the impact strength of samples increase.

Article
Thermal Conductivity Enhancement of Hybrid Epoxy Composites Using Copper Oxide Nanoparticles and Carbon-Nanotubes

Laith Abdullah, Mustafa Al-hadithi, Abbas Faris

Pages: 10-17

PDF Full Text
Abstract

In this current experimental research, the amount of improvement in the thermal conductivity of HEC hybrid epoxy resins was studied by adding copper oxide nanoparticles CuONp and carbon nanotubes (CNTs) as hybrid additives in different proportions to select the sample with the highest thermal conductivity value to include it in the design of the Flat Plate Solar Collector FPSC as Thermal Interface Material TIM reduces thermal resistance between the absorber plate and the tube. Four groups of samples were prepared using a mass balance with a sensitivity of 0.01g and a magnetic mixing device, then poured into cubic plastic molds to take the shape of the sample. The first group consists of one sample of pure epoxy to calibrate the thermal properties testing device through it. The second group consists of five samples of epoxy loaded with CNTs by weight (1, 3, 5, 7.5, 10) %. The third group consists of five samples of epoxy loaded with CuONp with weight percentages of (1, 3, 5, 7.5, 10) %. The fourth group consists of five samples of epoxy loaded with CuONp and CNTs combined in weight percentages of (1, 3, 5, 7.5, 10) %. The thermal conductivity of the samples was measured experimentally using the hot disk analyzer technique to measure thermal specifications. After comparing the thermal conductivity values of the samples, the highest value was 1.57 W/mK for the HEC sample loaded with 10% CNTs, which represents 9.23 times higher than pure epoxy

Article
Effect of SiC Addition the on Adhesive Wear Resistance of 6061 T6 Aluminum Alloy

Siham Hussain Ibrahem Al-Bayati

Pages: 271-278

PDF Full Text
Abstract

This paper is aimed to study the effect of SiC addition as reinforcement to 6061 T6 alloy. Al 6061 T6 alloy SiC composites were prepared by melting the alloy in a vortex and adding 4 % and 10% weight fractions of SiC. Then pouring the mixture into a mould to obtain a bar of 12 mm diameter and 150 mm length. Wear specimens were manufactured in dimensions of 20mm x 10mm according to ASTM to the base alloy and the cast matrix alloy. Microstructure have been carried out to understand the nature of structure and Hardness test also implemented to specimens. Adhesive wear test have been conduct both on the alloy and composites at different parameters (time, load and velocity). From the obtained results, it was found that wear resistance improved during the carbide addition comparing with the base alloy as a result of SiC addition which contributed in improving the hardness of the alloy that reflects to the wear resistance and these properties were improved as the increasing of the carbide silicon percentage.

Article
A Neural Model to Estimate Carrying Capacity of Rectangular Steel Tubular Columns Filled with Concrete

Kadhim Zuboon Nasser, Aqeel H. Chkheiwer, Mohammed F. Ojaimi

Pages: 192-201

PDF Full Text
Abstract

The goal of the current investigation is to construct an artificial neural network (ANN) to estimate the ultimate capacity of the composite columns consisting of a rectangular steel tube filled with concrete (RSTFC) under concentric loads. The experimental results of (222) samples collected from previous researches were used in constructing the proposed network. Totally (45) specimens were randomly chosen for network testing while the remaining (177) speci-mens were used to train the network. The information used to create the ANN model is ar-ranged into (6) variables represents the different dimensions and properties of the RSTFC col-umns. Based on the input information, a formulated network was used to estimate the columns' ultimate capacity. Results obtained from the formulated network, available laboratory tests, and Eurocode 4 and AISC equations were compared. The network values were closer to the laboratory values than the calculated values according to the specifications of the mentioned codes. It has been shown that the formulated ANN model has a high ability to estimate the RCFST ultimate capacity under concentric loads

1 - 25 of 25 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.