Switched reluctance motor (SRM) is an electric motor works based on the reluctance torque produced due to the variation of the rotor pole position with respect to stator poles. This paper adopts a thermal analysis on a 4-phase, 8/6 pole, 550W, SRM. Lumped parameters thermal network method(LPTN) is used in this analysis based on a combination of RMXprt/Motor-CAD software, in two- dimensional(2D), steady-state, with different cooling methods, and with different loading conditions. Motor losses like core losses, copper losses, and mechanical losses are regarded as the heat sources in SRM which are calculated by RMXprt software. The thermal analysis achieved by Motor-CAD includes displaying the temperature distribution on different motor parts like stator winding, stator poles, stator yoke, rotor poles, rotor yoke, shaft, covers, and housing. The analysis results showed the increasing temperature distribution on different motor parts with increasing motor loading conditions. Also, this temperature distribution is recorded using three different cooling methods. The comprehensive thermal analysis applied in this work will assist the motor designer in choosing a better motor thermal design without needing to produce and test costly prototype motors.
The extensive global competition between companies and the development of new industrial technologies have greatly contributed to the current competitive conditions Like industrial companies, customers demand high quality products, low prices and better performance. This fierce competition has led to concerns about improved product design. This development is based on GQFD. Model of this developed Water pump is employed by CAD solid model (version 7). In order to achieve competition and high quality and high performance in the Iraqi market. GQFD demonstrates the balance between product development and environmental protection. Used a water pump for a home air cooler as a case study. Data is collected and distributed using personal interview methods and questionnaire forms to indicate customer requirements. The data is then analyzed using Pareto chart and AHP to prioritize customer needs. These priorities are then placed in house of quality and matrix of relationships between customer requirements and technical characteristics is established. The product has been developed from electrical to mechanical, in addition to using accumulated, stored and recycled materials; it also saves 20% of energy, thereby combining energy reduction with the use of damaged materials and their re-entry into work. As a result, the cost of pump manufacturing will decrease
This research presents a mathematical model of feed-interval scallop height, where in a machined surface there are two types of scallop height, the pick(path)-interval scallop and the feed-interval scallop. The pick-interval scallop is generated by the finite pick offset between the successive cutting paths, while the feed-interval scallop is generated by the finite increment between the successive tooth feeds. New model that describes and predicts the geometric generating mechanisms of the feed-interval scallop height have been derived using torus cutter which is commonly used in multi-axis milling machine. The machining parameters (effective tool cutter radius, feed per tooth and the magnitude of tool axis inclination angles) have been considered in theoretical and experimental work to study the effect of these parameters on this type of scallop height. From theoretical and experimental work it was found that at high-speed machining, the feed-interval scallop is more important to the surface roughness than the path-interval scallop, and the feed-interval scallop is very sensitive to the tool-axis inclination angle. The feed-interval scallop height decreased sharply and quickly within a few degrees of the tool-axis inclination to the normal workpiece surface. In general, an inclination angle equal to is good enough for all tool diameters used in the present work, namely (6,8,10 12 mm).