The development of cities in the infrastructure and urbanization and the increase in the population make people increase in the purchase of the private car, which in turn causes the congestion , pollution , accident and noise especially after 2003, as Iraq's import of cars increased to 5,800,000 cars distributed between the provinces, as 3Anbar province ranked ninth in the development number of cars with 174,000 cars according to the Central Bureau of Statistics of the Ministry of Planning. The university is the largest governmental institution that has the largest traffic volume of vehicles. We have three directions for entering the Anbar university they are east, middle and west directions. Total traffic volume from east, middle and west direction is 2165 vehicles which lead to traffic congestion in Ramadi city and Anbar university. The total traffic volume in private transportation in east, middle and west direction is 727,515 and 923 vehicles respectively. No of students in private transportation in east, middle and west direction is 4617, 3185 and3985 passengers respectively. As results of this research, there are three proposed parks one of them in the Sujaria at east direction, second park in Ramadi center at middle direction and third park in 5km area at west direction. In this paper, we make comparing between private and public transport in terms of fuel costs and time from the origin (the three proposed parks) to destination (Anbar University) assuming that private cars stopped in those three parks by using Park & Ride System and used buses with capacity of 40 passengers to transport students to the university. Depending on no. of passengers in private transportation from the three proposed parks to university we got the No. of buses from east park (Sujaria area), middle park (Ramadi center) and west park (7km area) to university which were 28, 20 and 25 bus respectively because each bus can transport four times.
Materials selection is a multi-criteria decision-making (MCDM) problems because the large numberof factors affecting on decision making. The best choice of available material is critical to thecompetitiveness and success of the manufacturing organisation. The analytical hierarchy process(AHP) is an important tool to solve MCDM problems. The choosing process of suitable material(such as a refrigerant fluid) for the Air Condition System (ACS) is faced with challenges such aslack of a systematic approach in setting the optimal performance in terms of its impact on theenvironment and operation. Selecting process for the one refrigerant from a range suitable ofsuitable refrigerant is complex process. The study presents a comparative performance analysisof ACS for using four alternative refrigerants R290, R410, R404 and R22. Then, one of these suitablerefrigerant is selected. The comparison is based on three criteria system operation, environmentand maintenance.Novels ACS performance assessment model is proposed based on an analytical hierarchy process(AHP). The model is based on two main criteria of ACS, quantitative criteria, cooling capacity(CC), coefficient of performance (COP), etc.).And qualitative criteria (Ozone Depletion Potential (ODP), Global Warming Potential (GWP) andmaintenance cost (MC)). It is necessary to look for new technique help decision making to selectalternative refrigerants, to fulfill the goals of the international protocols (Montreal and Kyoto)and optimum operation, to satisfy the growing worldwide demand, in addition the increase outdoortemperature in some countries.This study provides a developed methodology for evaluating ACS performance. Moreover, it helpsto select a robust decision. The results obtained from AHP process that the best rank of the suitablerefrigerant was R404 (0.3763) followed by R22 (0.3657) and so on for the other. Therefore,the proposed methodology can help the decision maker to select the best alternative for bothcriteria (qualitative and quantitative) in complex selecting process.
Since FGM orthotropic structures have such striking qualities as high strength, exceptional stiffness, stiffness-to-weight ratio, reduced cost, and high strength-to-weight ratio, they are employed extensively in the mechanical, aerospace, and civil engineering sectors. Thick plates and shells have more noticeable shear deformation effects. Therefore, in recent years, there has been a lot of interest in the vibration and buckling investigation of FGMs orthotropic plates and shells. Moreover, researchers have developed a variety of approaches and procedures for the examination of orthotropic FGM plates and shells. The majority of the literature review in this publication is focused on orthotropic FGMs plate and shell buckling and linear and nonlinear free vibration. In engineering practices, it is customary to use material-oriented or orthotropic materials in several domains to optimize the structures and maximize material properties, which is especially crucial for FG constructions. Solutions for the orthotropic FGM structure are studied analytically and numerically with different plate and shell theories.
This paper offers the linear analysis of the static behavior of two directional functionally graded(2D-FG) cylindrical panels under the effect of internal symmetric loads. The mechanicalproperties of the cylindrical panel are given to be changed simultaneously through the thicknessand longitudinal directions as a function to the volume fraction of the constituents by a simplepower-law distribution. Based on Sander’s first order shear deformation shell theory (FSDT), theequations of motion for (2D-FG) panels are derived using the principle of minimum totalpotential energy (MPE). The finite element method (FEM) as an effective numerical tool isutilized to solve the equations of motion. The model has been compared with those available inthe literature and it observed good correspondence. The influences of the material variationalong the thickness and longitudinal directions, geometrical parameters, boundary conditionsand load parameters on the panel deformation are studied in detail.
The reliability of water supply system is a critical factor in the development and the ongoing capability to succeed in life and people's health. Determining of its, with high certainty, for performance of water supply system is developed to ensure the sustainability of system. Reliability (Re) plays a great role in evaluation of system sustainability. The probability approaches have been used to evaluate the reliability problems of systems. The probability approach is failed to address the problems of reliability evaluation that comes by subjectivity, human inputs and lack of history data. This research proposed two models; I) traditional model: fuzzy reliability measure suggested by Duckstein and Shresthaand then developed by El-Baroudy; and II) developed model: fuzzy reliability-vulnerability model. The two models implemented and evaluation of water supply system by using two hypothetical systems (G and H). System (G) consists of a single pump and System (H) consists of a two parallel pumps. Triangular and trapezoidal membership functions (MFs) are used to investigate of the reliability measure to the form of the membership function. The results agree with expectations that the reliability of parallel component system {ReH (0.53)} is higher than the reliability of single component system {ReG (0.47)}. Moreover, the result by using fuzzy set reduces the effect of subjectively in process of decision-making (DM). The fuzzy reliability vulnerability is able to handle different fuzzy representations and different operation environment of system
Agricultural, industrial, and household debris can be employed as biosorbents to extract heavy metals from water that has been contaminated. Kitchen waste includes, among other things, peels from promotional gates, lemons, avocados, apples, kiwis, watermelons, and onions. Moreover, coffee and tea grounds are considered to be household refuse. This review illustrates the scholarly investigations that explored the potential of various waste materials as adsorbents for wastewater treatment. An extensive array of experiments was conducted to determine the variables that influence the capacity of these materials to adsorb heavy metals. To undertake the experiments above, different concentrations of biosorbent were introduced into the effluent at various contact times and pH levels. The researchers investigated the effects of varying these parameters and found that the biosorbent's ability to adsorb heavy metals is directly proportional to these factors. The results and conclusion indicated that the impact of biosorbent concentration and contact duration on the pH of contaminated water was assessed. To encourage the incorporation of industrial, agricultural, and household refuse into water treatment processes rather than permitting it to accumulate as an environmental hazard.
This research focuses on studying the impact of different sources of wastewater, such as do-mestic, industrial, agricultural, etc. upon groundwater. The swamp of contaminated water collec-tion within the Al-Anbar University area was taken as a case study for this research. This swamp has a pond that works as a collection basin for different sources of wastewater mainly domestic waste coming from leakage of contaminated water from the septic-tank of the residential com-plex of students. This contaminated water will leak over time within the folds of soil due to per-meability and the effect of land attraction and reach the levels of groundwater.The presence of polluted water near groundwater is an environmental hazard and harmful because this leakage water has different diseases and germs, which could pose a danger to human health. Different samples of these sources were taken from different places at different times and some physical, chemical, and biological tests were then conducted. Wastewaters characterization was also investigated in this study to make an assessment for water quality and find out a proper treatment method. Data obtained from this study show different levels of pollutants, which could highly affect groundwater quality. A proper and advanced treatment method was also proposed in this study, depending on the wastewater characterization results. The purpose of this research is wastewater treatment using the physical method with coagulation and Flocculation processes with local coagulants to reduce pollutants impact on groundwater.The results showed the addi-tion of alum at 35 mg/l increased the removal efficiency by 80.7% at the settling time of 60 min, and the addition of 35 mg/l of the lime increased the removal efficiency by 63.9% at the same settling time.It has been proven that the use of alum is more effective than lime for sedimenta-tion suspended matter. The optimum dosage and settling time are 20 mg/l and 60 min respec-tively.