Portland cement consists of major oxides which include CaO, SiO2, Al2O3 and Fe2O3 as well as minor oxides which include: SO3 , MgO, Na2O and K2O, the last two oxides are called alkalis oxides. The research aims to study the effect of alkalis oxide ( Na2O+ K2O) on some physical properties of ordinary Portland Iraqi cement (type I) and sulfate - resisting Portland Iraqi cement (type V) provided from (Taslooja Factory) are used in the experimental work. The physical properties of the two types above , which are used in the experimental work, are initial and final setting time, soundness and compressive strength at (3, 7 and 28)days. The results show that the values of physical properties of type I and type V increase when the alkalis percentage increases up to 0.6 percent, while the value of the physical properties of the two types of cement mentioned above begins to reduce even when the percentage of alkalis still increases. Through the use of the ordinary Portland cement (type I) and the sulfate resisting Portland cement (type V), it is found that there is a little difference in the value of the physical properties.
This study aims to investigate the durability properties and microstructural changes of self-compacting concrete (SCC) incorporating waste polyethylene terephthalate (PET) as fibers and as fine aggregate replacement. This is after exposed to saline environment (Alkalies, Sulphates, and Chlorides). PET effect into two forms was also evaluated for routine rheological properties of SCC and mechanical strength before and after exposure to sulphate salt. Five proportions of each form of PET incorporation in SCC mixtures were utilized. The volume fractions considered for PET as fibers were (0.25, 0.5, 0.75, 1.0, and 1.25)% by volume, with aspect ratio of 28%, and (2, 4, 6, 8, and 10)% by volume for fine aggregate replacements. Results indicated that the inclusion of PET adversely affected fresh propertis especially high proportions of PET as fine aggregate. Alkali silica reaction (ASR) outcomes illustrated an enhancement in the mix containing PET fibers, while fine-PET mix was slightly enhanced. Magnesium sulphate reduced mass and compressive strength of all mixes in percentages ranging from (0.18-0.90) % for mass loss and from (0.47-55.13) % for compressive strength loss. Ultrasonic pulse velocity (UPV) and dynamic modulus of elasticity (Ed) increased due to the sulphate impact except for M0.5 and M10 which decreased in both tests. Chloride's theoretical and modelled results illustrated higher diffusion coefficients and lower surface chloride content of fiber-PET mixes as compared to fine-PET mixes. The predicted SCC cover depths for fiber-PET mixes were lower than those predicted for fine-PET mixes for 20 and 50 years of service life design.