The reliability of water supply system is a critical factor in the development and the ongoing capability to succeed in life and people's health. Determining of its, with high certainty, for performance of water supply system is developed to ensure the sustainability of system. Reliability (Re) plays a great role in evaluation of system sustainability. The probability approaches have been used to evaluate the reliability problems of systems. The probability approach is failed to address the problems of reliability evaluation that comes by subjectivity, human inputs and lack of history data. This research proposed two models; I) traditional model: fuzzy reliability measure suggested by Duckstein and Shresthaand then developed by El-Baroudy; and II) developed model: fuzzy reliability-vulnerability model. The two models implemented and evaluation of water supply system by using two hypothetical systems (G and H). System (G) consists of a single pump and System (H) consists of a two parallel pumps. Triangular and trapezoidal membership functions (MFs) are used to investigate of the reliability measure to the form of the membership function. The results agree with expectations that the reliability of parallel component system {ReH (0.53)} is higher than the reliability of single component system {ReG (0.47)}. Moreover, the result by using fuzzy set reduces the effect of subjectively in process of decision-making (DM). The fuzzy reliability vulnerability is able to handle different fuzzy representations and different operation environment of system
The universal motor, versatile and capable of running on both AC and DC sources, is utilized in various household appliances and power tools. This paper presents a featured methodology for analyzing a universal motor (UM) that does not have design data by extracting it via reverse engineering. These gained data were used to model the motor by Maxwell program and analyzing it by finite element method (FEM). Adopting the Maxwell program's drawing capability to design the square-shaped stator of a universal motor not part of the program library will also enable the Maxwell program to be widely used and unrestricted to use with particular motor designs. After modeling and solving the motor model, the performance characteristics of UM when operated with alternating current (AC) and direct current (DC) power supplies were investigated. The UM simulation results were compared with test results with good agreement. The success of a proposed methodology paved the way for the analysis of any electric motor included in the Maxwell program, even if this motor does not have design data.
Hydraulic actuators are one of the most viable choices due to their high power-to-weight ratio,low cost, robustness, fast response and great power supply. The present work focuses onbuilding an elevator prototype model simulates real hydraulic elevator. This model consists ofhydraulic parts (double-acting hydraulic cylinders, pump, valves, pipeline and filter) andelectronic parts (PLC, push-bottoms, relays and encoder). It is built with three floors in about300 cm height (total with the cylinder) to elevate a 30 kg payload and controlled by a PLCcontroller of (DELTA DVP-ES32) with 16 inputs and 16 outputs. The PLC receives input signals asorders from the operator as well as sensors and encoders. The PLC is programmed with WPSOFT2.46 Ladder diagram software to basically calling the elevator cabin through three locations andenabling its arrival at the desired floor. The cabin descent is achieved by using a proportionalcontrol valve which is controlled by the PLC. The cabin door is automatically opened and closedby DC motors. It is observed that, the application of this partnership between the PLC and theproportional valve in the build model helped to achieve excellent results in terms of systemcontrol and its efficiency, response, and smoothness.
This search includes analysis of Fallujah water network that are fed from the old drinking water treatment station in Fallujah , which provides citizens in residential areas (AL-Jolan District, AL- Mu'tasim district, AL-Andalus district) by drinking water by using a program (EPANET) in the hydraulic network analysis .It was found their are lack in the required amount of water which estimated by about 20% due to oldness of the station and the lack of expansion by estimation the population growth the city. After input required the data in the analysis in got the results, it was noted that the three areas were getting the amount of required water, but the speed of water in the pipe network was very low and below the allowable limits (less than 1 m / s), this means that the design of the network has not takes into account the economic side and health status. The results were compared with the situated case and found a lack of water amount reaching the people as a result of trespasses and interruptions which occurring in the network, as well as the head pressure which reach the supply points fall within the permissible limits where ranging between (38-48 m) but the use of water pumps in homes lead to decrease the head pressure whenever the node far away from the drinking water station.