Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for mounir hamood

Article
Direct Algorithm for Computation of Inverse Real Fast Fourier Transform (IRDFT)

sukaina salih, mounir hamood

Pages: 19-27

PDF Full Text
Abstract

This paper proposes an efficient algorithm for fast computation of the inverse real-valued discrete Fourier transform (IRDFT) using the decimation in frequency (DIF) approach. The proposed algorithm represents a direct method with a new implementation for fast computing of IRDFT. The algorithm derivation is based on the basic principles of the Cooley-Tukey algorithm with the divide and conquer approach and utilizes the advantage of conjugate symmetric property for the discrete Fourier transform (DFT) to remove all redundancies that appear when DFT deals with real data. The analyses of the proposed algorithm have shown that the arithmetic number has reached a minimum, therefore the structure of the developed algorithm possesses the desired properties such as regularity, simplicity, and in-place computation. The arithmetic complexity of this algorithm has been compared with the inverse FFT algorithm, and it was found that it needs the least number of multiplications and additions. The validity of the developed algorithm has been verified by reducing the peak-to-average power ratio PAPR in optical-OFDM systems compared with complex FFT. The simulation using MATLAB(R2021a) findings show that the RFFT O-OFDM system reduces PAPR more efficiently than the FFT O-OFDM system. The PAPR exhibits a reduction of approximately 2.4 to 2.75 dB when evaluated at a probability of occurrence of 10-1 in the complementary cumulative distribution function (CCDF) plot.

1 - 1 of 1 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.