Anbar Journal of Engineering Science
Login
Anbar Journal of Engineering Sciences
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of AJES
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • Announcements
    • Contact

Search Results for T. A. Salih

Article
Modified Key Model of Data Encryption Standard

Salih Mohammed Salih

Pages: 20-33

PDF Full Text
Abstract

This paper specifies a proposed improvement model of Data Encryption Standard (DES) which may be used to protect sensitive data. Protection of data during transmission may be necessary to maintain the confidentiality and integrity of the transformation represented by data. Instead of expansion step in each round which made by copying 16 bit from 32 bits data in each right side of the standard algorithm, the unused 8-bits as a key (sometimes it is used for error detection and correction purposes, or it is possible to generate an additional 8-bits with the 56-bits standard key) in the first starting round with the other 8-neglected bits from each of 16 round in the key algorithm will be used, and take the same locations of the expanded data. As a result, the complexity to cryptanalysis of the secured data has been increased. The proposed method was more active and reliable than standard conventional DES, where it can be switched to the system at any round for working with original DES algorithm, which means that an additional security has been added

Article
Practical Implementation of SCADA System for Falluja Substation

Salih Mohammed Salih

Pages: 28-46

PDF Full Text
Abstract

The Digital control systems for substations have been installed in different areas of Iraq in the recent years. Most of these techniques used a Supervisory Control And Data Acquisition (SCADA) with Remote Terminal Unit (RTU) for monitoring the metering devices for incoming and outgoing feeders, while the other system used a Programmable Logic Control (PLC) technique for controlling and monitoring the system inside substations by professional engineers. A practical monitoring system of SCADA with RTU has been introduced in this paper for Falluja substation. There are 3 devices of RTUs are used to collect data from ION 6200 devices installed inside incoming and outgoing panels for low Voltage (LV 380V), 33KV and 11KV, then the data from each RTU will be send to the SCADA (main Computer) via special router, the SCADA system used ION enterprise software supplied by AREVA company in addition to all panels which supplied by the same company. Many difficulties were appeared during the work, such as mistakes of IPs, setting parameters, selection of protocols, and matching of devices have solved until the normal work was obtained to the substation.

Article
Performance Analysis of Serial Concatenation Convolutional Codes Based on Amplitude Matrix

Salih Mohammed Salih, Balasem Salim Sumait

Pages: 1-16

PDF Full Text
Abstract

Serial Concatenation Convolutional Codes (SCCCs) encoder is built using a serial concatenation of two Recursive Systematic Convolutional (RSC) encoders, separated by an interleaver. These two RSC encoders depending on the trellis termination criteria are software implemented and the performance of each one of them is analyzed under different conditions and circumstances. The output data from the encoder are multiplied by an amplitude matrix (AM) at the transmitter side and the Inverse of Amplitude Matrix (IAM) at the receiver side. The reliability estimation, log-likelihood algebra, and soft channel outputs for Soft Output Viterbi Algorithm (SOVA) are examined. Then the modified Viterbi metric that incorporates a-priori information used for SOVA decoding is derived. A low memory implementation of the SOVA decoder is presented. The iterative SOVA for SCCCs is described with illustrative examples. The behavior of the SCCCs encoder-decoder scheme is tested under different circumstances with AM and without AM at the AWGN and Rayleigh fading channels with unlike frame sizes (FS) and constraint length (K). The results show that the performance of system with AM outperforms the other conventional system that worked without AM.

Article
A Proposed Improvement Model for MC-CDMA in Selective Fading Channel

Salih Mohammed Salih, Yahya Jassim Harbi, Talib Mahmoud Ali

Pages: 1-10

PDF Full Text
Abstract

In this paper, a proposed model based on phase matrix rotation was suggested to improve the performance of Multicarrier-Code Division Multiple Access (MC-CDMA) lies in Fast Fourier Transform (FFT) algorithm under the Additive White Gaussian Noise (AWGN) and frequency selective fading channel. This model is used to reduce the effect of multipath fading. The results extracted by a computer simulation for a single user, then it compared with the original technique for MC-CDMA based on FFT for both systems. As a result, it can be seen from the proposed technique that a high performance improvement was obtained over the conventional MC-CDMA, where the Bit Error Rate (BER) is widely reduced under different channel characteristics for frequency selective fading and the AWGN channel

Article
Studying the Factors effect on Separation of Two Solid Equivalent Particle According to Density and Determination the best Separation Point

Suha Salih

Pages: 22-35

PDF Full Text
Abstract

Density separation has many applications in metallurgy, medicine, clinical chemistry, microbiology, and agriculture. This study investigates the factors' effects on density separation in order to benefit from this technique. The separation quality depends on the velocity of particles because as the velocity of particles increases, the mean separation needs less time so it gives better separation, so the parameter effect on the value of the velocity is studied. These parameters were volume fractions, the diameter of the sphere, the density of the sphere, and the viscosity of the fluid. Each parameter was studied by calculating the velocity of particles using Stokes' law. The velocity of particles is directly proportional to some properties of particles. These properties are the diameter and density of a particle because as these properties increase, the mass of particles increases, which leads to increased kinetic energy, which increases turbulence. Turblance's velocity is increasing. The volume fraction of spheres is another property of particles' effects on density separation. This parameter is inversely proportional to velocity because a collision between particles increases, which decreases turbulence. Fluid properties also have an impact on density separation. This property is viscosity. Its effect deteriorates the efficiency of separation because viscosity is the resistance of the fluid to flow that serves to displace the particle, which leads to a reduction in the velocity of the particle. The maximum separation happens when the sink and float particles separate at the same time. That happens when the sink and float particles have the same velocity in the opposite direction. That means when the sum of velocities equals zero. In this research, the maximum separation was derived when the sum of velocities equaled zero.

Article
DOA Based Minor Component Estimation using Neural Networks.

Adnan Salih Sahle

Pages: 49-60

PDF Full Text
Abstract

Minor component analysis (MCA) of lower dimensional data is related to many signal processing applications. MCA strives to extract the "minor" direction in the data space where the variance of the data is minimal, identify the way for dimension reduction and data compression. In this paper neural networks are used to estimate the minor component of signal. This component is used to determine the Direction of Arrival Estimation (DOA) of incident signals. These signals are considered to be emitted from their emission sources .The neural networks knowing “Hebbian-networks” are used to estimate the minor component directions from signal subspace. Narrow band signals are considered here and strike an array composed of M sensors. Simulation results are introduced to shown the performance of the adaptive neural networks to estimate signal components, a comparison of the results obtained from classical method and MCA method, is presented which shows the performance of MCA over classical methods, to estimate exact signal direction from noise subspace.

Article
IHS Image Fusion Based on Gray Wolf Optimizer (GWO)

Sapan Ahmed, Dleen Salih

Pages: 65-75

PDF Full Text
Abstract

Satellites may provide data with various spectral and spatial resolutions. The spatial resolution of panchromatic (PAN) images is higher, but the spectral resolution of multispectral (MS) images is greater. There is Satellite sensors limitation for capturing an image with high spatial and spectral resolution, due to the hardware design of the sensors. Whereas many remote sensing, as well as GIS applications, need high spatial and spectral resolution. Image fusion merges images of different spectral and spatial resolutions based on a certain algorithm. It can be used to overcome the sensor's limitation and play an important role in the extraction of information. The standard image fusion approaches lose spatial information or distort spectral characteristics. Optimizations of fusion rules can overcome and degrade the distortions as the fusion core is the image fusion rules. In this paper, the Grey Wolf Optimizer (GWO) is used to find the optimal injection gain, as most distortions in image fusion are caused by the extraction and injection of spatial detail. Both qualitative and quantitative metrics were utilized to evaluate the quality of the merged image. The mentioned metrics that were used commonly for evaluation of image fusion results support the proposed algorithm for image fusion as the output image was qualitatively and quantitatively growth. In the future the proposed method can be updated by increasing the objective function dimensions to two or three for getting a best fused image.   

Article
Artificial Neural Networks Modeling of Heat Transfer Characteris-tics in a Parabolic Trough Solar Collector using Nano-Fluids

T. A. Salih, S. A. Mutlag, H. K. Dawood

Pages: 245-255

PDF Full Text
Abstract

In the current article, an experimental investigation has been implemented of flow and heat transfer characteristics in a parabolic trough solar collector (PTSC) using both nano-fluids and artificial neural networks modeling. Water was used as a standard working fluid in order to compare with two different types of nano-fluid namely, nano-CuO /H2O and nano-TiO2/ H2O, both with a volume concentration of 0.02. The performance of the PTSC system was eval-uated using three main indicators: outlet water temperature, useful energy and thermal efficiency under the influence of mass flowrate ranging from 30 to 80 Lt/hr. In parallel, an artificial neural network (ANN) has been proposed to predict the thermal efficiency of PTSC depending on the experimental re-sults. An Artificial Neural Network (ANN) model consists of four inputs, one output parameter and two hidden layers, two neural network models (4-2-2-1) and (4-9-9-1) were built. The experimental results show that CuO/ H2O and TiO2/H2O have higher thermal performance than water. Overall, it was veri-fied that the maximum increase in thermal efficiency of TiO2/H2O and CuO/H2O compared to water was 7.12% and 19.2%, respectively. On the oth-er hand, the results of the model 4-9-9-1 of ANN provide a higher reliability and accuracy for predicting the Thermal efficiency than the model 4-2-2-1. The results revealed that the agreement in the thermal efficiency between the ANN analysis and the experimental results about of 91% and RMSE 3.951 for 4-9-9-1 and 86% and RMSE 5.278 for 4-2-21.

Article
Kinematic Workspace Modelling of Two Links Robotic Manipulator

Dler Salih Hasanc, Nazhad Ahmad Husseinb, Sara SerwerYouns

Pages: 19-24

PDF Full Text
Abstract

The purpose of this paper is to present a new method to establish a kinematic model for different manipulators, whose can be simulate the move in a two-dimensional workspace.The model is applied and implemented to four robot arm manipulators witha different DOF.The first step of modelling a robot is establishing its mathematical model parameters. It requires assigning proper length and angle for each link and creation rotational matrics. Simulation based on Matlabsoftware was implemented for finding their workspace

Article
Effect of Grooves Geometric Parameters on Hydraulic Thermal Performance of Circular Pipe Partially Filled with Metallic Foam

Obaid T. Fadhil, Hamdi E. Ahmed, Wisam A. Salih

Pages: 316-325

PDF Full Text
Abstract

The present paper addresses the numerical study of non-Darcy laminar forced convectionflows in a pipe partially filled with grooved metallic foam attached in the inner pipe wall,which is subjected to a constant heat flux. Computations are carried out for nine differentdimensions of grooves with different Reynolds numbers namely; (250 ≤ Re ≤ 2000) andtheir influences on the fluid flow and heat transfer are discussed. The governing and energyequations are solved using the finite volume method (FVM) with temperature-dependentwater properties. The novelty of this work is developing of a new design for the metallicfoam, which has not studied previously yet. It is observed that the two helical grooves withtwo pitches increase the Nu around 5.23% and decrease the pumping power nearly 12%. Itis also showed a reduction in the amount of material required for manufacturing the heatexchanger, which leads to a decline in the weight of the system 8.29%.

Article
Direct Algorithm for Computation of Inverse Real Fast Fourier Transform (IRDFT)

sukaina salih, mounir hamood

Pages: 19-27

PDF Full Text
Abstract

This paper proposes an efficient algorithm for fast computation of the inverse real-valued discrete Fourier transform (IRDFT) using the decimation in frequency (DIF) approach. The proposed algorithm represents a direct method with a new implementation for fast computing of IRDFT. The algorithm derivation is based on the basic principles of the Cooley-Tukey algorithm with the divide and conquer approach and utilizes the advantage of conjugate symmetric property for the discrete Fourier transform (DFT) to remove all redundancies that appear when DFT deals with real data. The analyses of the proposed algorithm have shown that the arithmetic number has reached a minimum, therefore the structure of the developed algorithm possesses the desired properties such as regularity, simplicity, and in-place computation. The arithmetic complexity of this algorithm has been compared with the inverse FFT algorithm, and it was found that it needs the least number of multiplications and additions. The validity of the developed algorithm has been verified by reducing the peak-to-average power ratio PAPR in optical-OFDM systems compared with complex FFT. The simulation using MATLAB(R2021a) findings show that the RFFT O-OFDM system reduces PAPR more efficiently than the FFT O-OFDM system. The PAPR exhibits a reduction of approximately 2.4 to 2.75 dB when evaluated at a probability of occurrence of 10-1 in the complementary cumulative distribution function (CCDF) plot.

Article
Time-dependent Numerical Modeling of Plain Concrete Columns Wrapped by FRP Sheets

A. S Mahmoud, Z. T Salih

Pages: 267-280

PDF Full Text
Abstract

The demand for strengthening structures becomes necessary when an increase in load is inevitable. For instance very little information is available on the time-dependent behaviour of strengthened concrete columns. Also, this is a primary factor hindering the widespread uses of FRP strengthening technologies in the construction implementations. This paper investigates the behaviour of strengthened concrete columns with FRP sheets subjected to long-term loading by non linear finite element analysis using ANSYS computer package. A three-dimensional finite element model has been used in this investigation. This study achieved a good agreement between numerical and experimental results, it was found that the percentage of error of specimens do not pass (5%) for creep strain. In addition, a parametric study was performed to study the effect of different factors on the behaviour of FRP strengthened concrete columns.

Article
A Review on Factors Effecting The adsorption of Heavy Metal Using Different Biosorbents

Suha Salih

Pages: 25-40

PDF Full Text
Abstract

Agricultural, industrial, and household debris can be employed as biosorbents to extract heavy metals from water that has been contaminated. Kitchen waste includes, among other things, peels from promotional gates, lemons, avocados, apples, kiwis, watermelons, and onions. Moreover, coffee and tea grounds are considered to be household refuse. This review illustrates the scholarly investigations that explored the potential of various waste materials as adsorbents for wastewater treatment. An extensive array of experiments was conducted to determine the variables that influence the capacity of these materials to adsorb heavy metals. To undertake the experiments above, different concentrations of biosorbent were introduced into the effluent at various contact times and pH levels. The researchers investigated the effects of varying these parameters and found that the biosorbent's ability to adsorb heavy metals is directly proportional to these factors. The results and conclusion indicated that the impact of biosorbent concentration and contact duration on the pH of contaminated water was assessed. To encourage the incorporation of industrial, agricultural, and household refuse into water treatment processes rather than permitting it to accumulate as an environmental hazard.

Article
Improving The Modulus of Elasticity of High Performance Concrete by Using Steel Fibers

Shakir A.Salih

Pages: 205-216

PDF Full Text
Abstract

The aim of this paper is to study experimentally the effect of steel fibers content on the modulus of elasticity of High Performance concrete HPC in different curing age. The results showed that adding steel fibers to HPC led to a considerable improvement in static and dynamic modulus of elasticity where at 90 day water curing the percentages of increasing in static modulus of elasticity of High Performance Steel Fiber Concrete HPSFC relative to HPC were 8.2%, 9.98%, and 11.88% at 0.5%, 1%, and 1.5% steel fibers by total concrete volume, respectively. While, the improvement of dynamic modulus of elasticity of HPSFC relative to HPC at 28 day were 8.09%, 10.7%, and 11.07% % at 0.5 %, 1 %, and 1.5 % respectively.

1 - 14 of 14 items

Search Parameters

Journal Logo
Anbar Journal of Engineering Sciences

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.