The Artificial Neural Network (ANN) and numerical methods are used widely for modeling andpredict the performance of manufacturing technologies. In this paper, the influence of millingparameters (spindle speed (rpm), feed rate (mm/min) and tool diameter (mm)) on material removalrate were studied based on Taguchi design of experiments method using (L16) orthogonalarray with 3 factor and 4 levels and Neural Network technique with two hidden layers and neurons.The experimental data were tested with analysis of variance and artificial neural networkmodel has been proposed to predict the responses. Analysis of variance result shows that tooldiameters were the most significant factors that effect on material removal rate. The predictedresults show a good agreement between experimental and predicted values with mean squarederror equal to (0.000001), (0.00003025), (0.002601) and (0.006889) respectively, which produceflexibility to the manufacturing industries to select the best setting based on applications.
This research presents a mathematical model of feed-interval scallop height, where in a machined surface there are two types of scallop height, the pick(path)-interval scallop and the feed-interval scallop. The pick-interval scallop is generated by the finite pick offset between the successive cutting paths, while the feed-interval scallop is generated by the finite increment between the successive tooth feeds. New model that describes and predicts the geometric generating mechanisms of the feed-interval scallop height have been derived using torus cutter which is commonly used in multi-axis milling machine. The machining parameters (effective tool cutter radius, feed per tooth and the magnitude of tool axis inclination angles) have been considered in theoretical and experimental work to study the effect of these parameters on this type of scallop height. From theoretical and experimental work it was found that at high-speed machining, the feed-interval scallop is more important to the surface roughness than the path-interval scallop, and the feed-interval scallop is very sensitive to the tool-axis inclination angle. The feed-interval scallop height decreased sharply and quickly within a few degrees of the tool-axis inclination to the normal workpiece surface. In general, an inclination angle equal to is good enough for all tool diameters used in the present work, namely (6,8,10 12 mm).
This research presented a strategy for designing a particular set of surfaces, obtained by the technique of cross-sectional design. The surfaces considered were formed by sliding a Bezier curve (profile curve), and also this research describes an automatic procedure for selective identification of sampling points in reverse engineering applications using Coordinate Measurement Machine. In addition, Matlab program have been used in the present work so as to plot the curve sections of the surfaces using transformation matrices. UGS program have been also used to connect the sections that designed in Matlab program to get the final shape of the proposed surface. It can be concluded that the whole steps task which built in the present research can be programmed in a single block of the part program that’s from it can be create any curve or surface at minimum designing time.