The development of cities in the infrastructure and urbanization and the increase in the population make people increase in the purchase of the private car, which in turn causes the congestion , pollution , accident and noise especially after 2003, as Iraq's import of cars increased to 5,800,000 cars distributed between the provinces, as 3Anbar province ranked ninth in the development number of cars with 174,000 cars according to the Central Bureau of Statistics of the Ministry of Planning. The university is the largest governmental institution that has the largest traffic volume of vehicles. We have three directions for entering the Anbar university they are east, middle and west directions. Total traffic volume from east, middle and west direction is 2165 vehicles which lead to traffic congestion in Ramadi city and Anbar university. The total traffic volume in private transportation in east, middle and west direction is 727,515 and 923 vehicles respectively. No of students in private transportation in east, middle and west direction is 4617, 3185 and3985 passengers respectively. As results of this research, there are three proposed parks one of them in the Sujaria at east direction, second park in Ramadi center at middle direction and third park in 5km area at west direction. In this paper, we make comparing between private and public transport in terms of fuel costs and time from the origin (the three proposed parks) to destination (Anbar University) assuming that private cars stopped in those three parks by using Park & Ride System and used buses with capacity of 40 passengers to transport students to the university. Depending on no. of passengers in private transportation from the three proposed parks to university we got the No. of buses from east park (Sujaria area), middle park (Ramadi center) and west park (7km area) to university which were 28, 20 and 25 bus respectively because each bus can transport four times.
Ramadi city is suffering from severe flood problems during rainfall season as in many cities in developed countries. Storm Water Management Model (SWMM) was used to simulate storm sew-er network in the study area and depending on design rainfall intensity of 9.6 mm/hour. The rainfall intensity was proposed to increased by two to three times of the design intensity because of the absence of metrological stations in the study area to record rainfall intensity data of the rain storm. The intensity increasing by three times led to maximizing the flood risk by 43%. The proposed management to overcoming this problem is linking the collateral lines in Al-Andalus and Alhoz suburbs by additional pipes, this method reduces the percentage of flooding to 31%. Moreover, Economic Indicators (EI) were suggested to evaluate the cost of the network develop-ment. The area index ( ) which represents the total cost of the added pipes to the total area of the suburb, and the longitudinal index ( ), which represents the total cost of the added pipes to the length of the main pipe, the magnitudes of these indexes are 178 US dollar/hectare, and 57 US dollar/m respectively.
The main purpose of this search is to study the punching shear behavior of fourteen specimens of Reactive Powder Concrete (RPC) two-way flat plate slabs, half of these slabs have been exposed to a high temperature up to 400 C° by using an electric oven. All slabs have dimensions of (400x400x60) mm, with steel reinforcement mesh of (Ø6mm) diameter. Laboratory tests show that there is an increase in the value of First Crack Loading (FCL) and Ultimate Load (UL) by (208, and 216.67) % and a decrease in deflection by (56.85) % due using slab with complete reactive powder relative to a slap made of normal concrete. The use of the (RPC)mixture in layers in slabs gave results close to the slab which consists of full (RPC) this gives the benefit of more than the use of a slab that contains full reactive powder concrete in terms of cost, the increase was in FCL and UL by (130.8, 169.23, 102.7 and 135.135) % and a decrease in the value of deflection by (37.17, 47.64) %. The use of a partial reactive powder mixture also showed good results, and by increasing the dimensions of the RPC area, the results were better. the increase in FCL and UL by (54, 116, and 185) % and (53, 116.67, and 166.67) % and a decrease in value of deflection by (36.12, 42.4, and 50.26) % from reference slab. When slabs are subjected to high temperatures, there may be a decrease in the value of the FCL and UL and an increase in the value of deflection when compared to models not exposed to high temperature. But when compared to the reference slab with the same circumstance showed an increase in the value of the FCL and the rate ranged between (50- 200) % and the UL was the ratio ranged between (51.35-208.1) % and a decrease in the value of the deflection where the ratio ranged (21-46) %
The reducing of heat gain through the outer walls of the buildings in summer will contribute in reducing the air conditioning costs. This is one of the best features of design requirements nowadays. To achieve this, the phase change materials (PCM) can be used as an embedded material in the walls to reduce heat transfer. The paraffin wax is one of the common materials used as a PCM in the building walls. The paraffin wax is used in this study with (20%) volume percentage in the external layer of the treated wall. In the present work, the treated wall (with embedded wax in the wall) and non-treated walls have been experimentally investigated. Two Iraqi wall models were employed to run the experiments, whereby these models were exposed to an external heat source using (1000 W) projector for each model. The temperatures were recorded at different locations in the walls during the charging and discharging periods. The results showed that the temperature of the internal surface for the treated wall was lower than that of the non-treated wall at the end of the discharging period (6 hr) where the temperature difference between the treated and non-treated walls was reached (1.6℃).
This paper describes a numerical method for calculating the temperature distribution and latent heat storage (LHS) in the treated wall (TW) and non-treated wall (NTW). The developed method was assumed that the outer cement layer (Iraqi wall) enveloping the external wall of building and houses are contains paraffin wax as a phase change material (PCM). (25%) is the volume percentage of paraffin wax is mixed with cement which forming a treated layer. A comparison results between the (TW) and (NTW) has been done. The paper presents a simple calculation of case study for air-conditioning in two walls type of residential building. The outer solar air temperatures as function of day time are considered for a hot day in summer (July) for Baghdad city. The aim of this paper was to obtain physical validation of the numerical results produced from using developed FORTRAN program. This validation was obtained through a comparison of numerical solution of two different wall compositions exposed to the same external and internal load conditions. The calculations on transient heat transmissions across different walls were conducted. It was found that when using the (TW) with (PCM) produces lower surface and heat flux towards the cooling space with respect to (NTW).
The research aims evaluates the water consumption and future demand by using the WEAP program. Five scenarios have been adopted, which is the reference scenario that showed the results of increase in water demand from (100) million cubic meters in 2015 to (397) MCM in 2035 with a water deficit in 2035 to (38) MCM. Modern irrigation methods reduce the water deficit from (38-2.9) MCM. While the use of underground water reduced the deficit from (38-26) MCM. As for the wastewater reuse scenario, the deficit decreased from (38-35) MCM. Reducing the per capita share did not reduce the water deficit.
In this current experimental research, the amount of improvement in the thermal conductivity of HEC hybrid epoxy resins was studied by adding copper oxide nanoparticles CuONp and carbon nanotubes (CNTs) as hybrid additives in different proportions to select the sample with the highest thermal conductivity value to include it in the design of the Flat Plate Solar Collector FPSC as Thermal Interface Material TIM reduces thermal resistance between the absorber plate and the tube. Four groups of samples were prepared using a mass balance with a sensitivity of 0.01g and a magnetic mixing device, then poured into cubic plastic molds to take the shape of the sample. The first group consists of one sample of pure epoxy to calibrate the thermal properties testing device through it. The second group consists of five samples of epoxy loaded with CNTs by weight (1, 3, 5, 7.5, 10) %. The third group consists of five samples of epoxy loaded with CuONp with weight percentages of (1, 3, 5, 7.5, 10) %. The fourth group consists of five samples of epoxy loaded with CuONp and CNTs combined in weight percentages of (1, 3, 5, 7.5, 10) %. The thermal conductivity of the samples was measured experimentally using the hot disk analyzer technique to measure thermal specifications. After comparing the thermal conductivity values of the samples, the highest value was 1.57 W/mK for the HEC sample loaded with 10% CNTs, which represents 9.23 times higher than pure epoxy
Water treatment sludge (WTS) is a byproduct generated during the treatment of wastewater. In recent years, researchers have explored the potential of using WTS as a soil stabilizer to improve the geotechnical properties of soils. In this review, we will examine the current state of knowledge on the use of WTS for this purpose. The organic matter content of WTS is usually high and can range from 30% to 60%. The high organic matter content makes WTS a potential source of nutrients for plants, and it can also enhance soil structure and water retention. Another important consideration is the environmental impact of using WTS. The use of WTS can be an eco-friendly alternative to chemical stabilizers, which can have adverse effects on the environment. However, there are concerns about the potential for heavy metal contamination in WTS. To mitigate this risk, it is recommended to conduct thorough testing of WTS before using it as a soil stabilizer. Finally, the use of WTS as a soil stabilizer has the potential to improve the geotechnical properties of soils. However, it is essential to consider factors such as the type and dosage of WTS, the soil type, and the environmental impact before using it. Further research is also needed to explore the potential of using WTS in different soil types and environmental conditions.